As David Gerrold puts it, when it comes to interstellar empires Control depends upon communication.

If you are keeping your novel constrained to realistic physics, it is not fair to exceed the speed of light. No FTL starships and no Ansibles. Which will more or less limit your empire to the bounds of the Solar System. Travel and communication with with other stars will take years to decades to hundreds of thousands of years to arrive. Communication within the orbit of Neptune will be at a maximum travel time of about 8 hours (though that can increase to up to two years if you decide to include the Oort cloud).

No way around it: a galactic empire is going to need FTL starships and/or FTL communication.


In telecommunications, information transfer is the process of moving messages containing user information from a source to a sink via a Communication channel. In this sense, information transfer is equivalent to data transmission which highlights more practical, technical aspects.

The information transfer rate may or may not be equal to the transmission modulation rate.

Bidirectional information transfer is called information exchange.

From the Wikipedia entry for INFORMATION TRANSFER

"But as for the continents, sir, why, I thought you would know. Nyanza has none. Altla is just a medium-sized island. Otherwise there are only rocks and reefs, submerged at double high tide, or even at Loa high."

"Oh, I knew," said Flandry reassuringly. "I just wanted to be sure you knew." He turned off the receiver and sat thinking. Damn those skimpy pilot's manuals! He'd have had to go to Spica for detailed information. If only there were a faster-than-light equivalent of radio. Instant communications unified planets; but the days and weeks and months between stars let their systems drift culturally apart—let hell brew for years, unnoticed till it boiled over—made a slow growth of feudalism, within the Imperial structure itself, inevitable. Of course, that would give civilization something to fall back on when the Long Night finally came.

From THE GAME OF GLORY by Poul Anderson (1958)

FTL Messaging

I am an optimist; anyone interested in the future has to be, otherwise he would simply shoot himself. I believe that communications satellites can unite mankind.

Let me remind you that this great country was virtually created one hundred years ago by two inventions. Without them, the United States was impossible; with them, it was inevitable. Those inventions were, of course, the railroad and the electric telegraph.

From SATELLITES AND SARIS by Arthur C. Clarke (1971)

The three main ways communication methods used in various science fiction universes are:

If the science fiction author is postulating the existence of either FTL travel and/or FTL communications things get more complicated. Does FTL travel exist yes/no? Does FTL communication exist yes/no? And if both FTL travel and FTL communication exists, which if either is faster? And faster by how many orders of magnitude?

The answer to these questions will have major implications to your science fiction universe in general and your galactic empire in specific.

If you have both and both have the same speed, which one you will use will depend upon whether you want to move matter or move information.

As I mentioned before, the maximum speed of starships and the maximum speed of communications limits the maximum size of the empire. If the travel time of the intel and the travel time of the armed response is too high a total, the Empire will not be able to prevent a rebellious planet on the rim from leaving the empire. This is assuming that the travel time increases with the distance, all bets are off if you have something weird like instantaneous communication.

Bandwidth is important as well. The Capital will have the data to make a reasoned policy if you can transmit to them several terabytes of situational reports, not so much if all you can send is a 140 character tweet.

Superluminal Radio

If ansibles are much faster that starships, the situation will be much like modern-day Navy vessels talking to home port by radio. You will be not be required to send the ship's engines along with the message. Note that "much faster" does not necessarily mean "instantaneous." In classic Star Trek, when the Starship Enterprise was in deep space, a Subspace Radio message might take a couple of weeks to travel to Starfleet Command. But the Enterprise would take months to make the same trip. Subspace radio was only "real time" if you were closer than a few tens of light-years or so.

If there are ansibles but no FTL starships, you will have a lively interstellar Internet, but the massive overhead of slower-than-light starships will restrict interstellar travel to only such people and material objects that absolutely positively must be transported.

And it is possible to have ansibles that provide instantaneous communication, regardless of distance.

In the Renegade Legion universe, the Terran Overlord Government (TOG) alone has the technology for "Very Large Communication Relays" (VLCA). These are titanic FTL communication installations (meaning they will not fit inside a standard starship, you need one that is outrageously huge) that have a range of pretty much anywhere inside the entire Milky Way galaxy.

Their rivals the Renegades have to make do with pathetic P-Comm FTL communication. P-Comms are lucky if it can reach a neighboring star system. VLCAs have a range that is about 100,000 times greater.

Such is the overwhelming advantage of TOG having VLCAs, that for the Renegades such installations are pretty much automatically the primary military target in a given star system. If the Renegades can destroy the VLCA, the TOG loses its unfair communication advantage and the military odds become more equal. As long as the VLCA exists the TOG has it all their own way.

In Charles Stross' IRON SUNRISE, the most valuable things are packages of entangled quantum dots, used for FTL communication via Bell's Inequality. Each dot can instantaneously transmit one bit of information, and then is worthless.

They also have the fascinating twist that the dots must be transported slower than light or they are ruined. They are shipped by Starwisp, taking years to transport between stars.


"You've got your own causal channel?" Frank asked, hope vying with disbelief...

..."Tiny — it's the second memory card in my camera." She held her thumb and forefinger apart. "Looks just like a normal solid state plug. Blue packaging."...

...Alice looked over the waist-high safety wall, then backed away from the edge. "I'm not climbing down there. But a bird — hmmmm. Think I've got a sampler head left. If it can eject the card . . . you want me to have a go? Willing to stake half your bandwidth with me if I can liberate it?"

"Guess so. It's got about six terabits left. Fifty-fifty split." Thelma nodded. "How about it?"

"Six terabits —" Frank shook his head in surprise. He hated to think how much it must have cost to haul those milligrams of entangled quantum dots across the endless light years between here and Turku by slower-than-light starwisp. Once used they were gone for good, coherence destroyed by the process that allowed them to teleport the state of a single bit between points in causally connected space-time. STL shipping prices started at a million dollars per kilogram-parsec; it was many orders of magnitude more expensive than FTL, and literally took decades or centuries of advanced planning to set up. But if it could get them a secure, instantaneous link out into the interstellar backbone nets..."

From IRON SUNRISE by Charles Stross (2004)
RocketCat sez

Listen up, you writers. I'm gonna give you some juicy tidbits from an important book by Tom Standage called The Victorian Internet. If you are smart you should read the entire thing cover to cover.

Using the trade secret of science fiction you can use the book as a template for upheaval in your galactic empire when some clown unexpectedly increases the speed of FTL radio faster than starships. Or when FTL radio gets invented in the first place.

If you can't figure out how to use the book as a template, well you can always go back to writing Mary Sue Star Wars fanfic.

Back in the 19th century they didn't have crap for technology. No smart phones, no combat drones, no submachine guns with Teflon coated cop-killer bullets, no antibiotic-resistant microbes cultivated by dumping gallons of antibiotics downs cow gullets, no cable TV, no nuttin'.

But they did have an Internet. Don't roll your eyeballs at me, they called it the electric telegraph machine. If you had been paying attention you'd realize it was one of the most titanic advances in communication since Gutenberg invented his printing press. It changed the world more drastically than the advent of the Internet changed your world. But you would have known that already if you'd read Terry Pratchett's novel Going Postal, featuring the system of visual telegraph towers known as "the clacks".

Pretty much all the shenanigans and whoopla currently surrounding your modern-day computer internet is just a re-hash of the exact same events that swirled around the electric telegraph. Yes: revolutionizing business, inventing new types of crime, encouraging the use of secret codes, governments futilely trying to regulate it, and the rise of a new techy culture. All of it happened before in the 1800s. Everything old is new again, and you fools who ignore your history are doomed to repeat it.

And all you authors who used this in your novels can smile smugly as your know-it-all readers get blindsided. The readers will condescendingly sniff and think you are merely rewriting the tired old story about the advent of AOL and the September that never ended. And then they will be savagely sucker-punched when your novel enters the parts where the telegraph was NOT like the internet. You'll get a rep for writing surprising novels, you will.

For a zillion years prior to the telegraph, the fastest communication was by some poor sod frantically riding on horseback. Messages moved barely a hundred miles a day, and that was only with a constant supply of fresh horses (this is when your galactic empire has starships but no FTL radio). For the same zillion years rulers of various empires had to put up with outrageous time lags. Send off your army, then wait for freaking months to find out how the battle went. You ain't gonna make much of an empire with that pathetic speed. And as for central control, ha! Not a chance, Alexander the Great. You'll just have to trust your generals to handle things. Or travel with the army and hope the capital doesn't revolt while you are gone.

But that all changed in 1791 when an unemployed guy named Claude Chappe and his brothers invented the first semaphore line. Claude wanted to give it the stupid name tachygraphe, but his classically trained friend managed to talk him into télégraphe.

Given how hot tempers was running during the French Revolution Claude was lucky it was only twice that angry mobs destroyed his semaphore and chased him while waving torches and pitchforks (they were convinced that Claude was trying to talk to the dastardly royalist prisoners being held in Temple Prison). I'm sure Claude was a bit bitter about this, since the French Revolution was the reason he was unemployed in the first place.

In 1793 Claude managed to sell the French National Convention on a trial experiment (well, it sort of helped that his brother Ignace Chappe was member of the Legislative Assembly). A three tower set of semaphores was laid out along twenty miles. It was a success, sending a test message in about eleven minutes flat. The tower moved wooden arms into specific patterns while the next tower watched through a telescope.

One of the evaluators, a scientist named Joseph Lakanal, was extremely impressed. Mostly because he realized how the semaphore would allow the central government in Paris to keep an iron grip on the provinces. The speed increase from horse to semaphore also increased the range of imperial control. It was a break-through! Lakanal convinced the government to fund a fifteen-station line from Paris to Lille and it quickly proved its worth. By August of 1794 it was reporting the recapture of a French town from the evil clutches of the Austrians and Prussians within an hour after the battle ended. The French government saw this was the hottest invention since the gun, and started building more lines.

When emperor Napoleon Bonaparte seized power, he too saw the semaphore was the sine qua non of Empire, and ordered even more expansions. He also demanded the system be able to cross the English Channel, since obviously it was only a matter of time before Great Britain became a suzerainty of the mighty French Empire (he was a bit optimistic there). The other European nations awoke to the danger and started frantically making their own semaphore systems so there wouldn't be a "semaphore gap." Otherwise they'd be at a fatal disadvantage. Not that they didn't start drooling at the thought of increasing their own iron grip on their own provinces. France showed the world how to do it.

The semaphore system was called the technological marvel of the age (which was true), and was optimistically predicted to abolish war (which was hysterically false). Wipe that smug look off your face, the same thing was predicted for our modern computer internet.

Some said the semaphore could be opened to civilian use, a very rapid form of mail. The system would actually produce cash instead of being a money pit. Claude wanted to use it in business, sending commodity prices all over Europe. But Napoleon nixed both those ideas. But he did allow sending winning lottery numbers, since that stopped the cheating which stole money from the government.

Predictably all sorts of charlatans, patent trolls, and irate rival inventors came boiling out of the woodwork trying to steal Claude's money and fame. The constant barrage drove him into depression and paranoia. He committed suicide in 1805, and was buried under a tombstone engraved with a semaphore tower displaying the sign for "At Rest." There was also a bronze sculpture of Claude, but it got melted down during the Nazi occupation of Paris.

But the semaphore telegraph continued to spread like wildfire. By 1830 it covered most of western Europe and most provinces were quite firmly iron gripped. Imperialists were quite pleased.

The Britain Admiralty kept fending off stupid crackpot schemes to "improve" the telegraph, schemes pushed by the hordes of garage inventors and junior scientists who had a bad case of Telegraph Fever. Many involved using that weird phenomenon known as "electricity." Alas none of the schemes worked very well, the inventors were secretive so the other inventors had to start from scratch, and all the schemes were quite inferior to the existing semaphore system. The Admiralty saw no point in wasting money fixing something that wasn't broke.

The sad fact of the matter was that the semaphore was broke, it just wasn't obvious. It had some severe limitations that people just took for granted.

Semaphore lines were expensive to run. You had to build costly towers everywhere. You needed to staff them with large teams of skilled operators. The data transfer rate meant you could send little more than 140 character tweets at a time. This means only the government had deep enough pockets to build and run semaphores, keeping them out of the reach of civilians and businesses. Semaphores also failed to work in the dark of night or through fog.

An electric telegraph would fix most of those problems, but nobody was visionary enough to see it.

Not that an electric telegraph was going to be easy, mind you.

The first big problem of an electric telegraph was how the heck did you detect the electricity? Thomas Edison hadn't been born yet, much less invented the light-bulb. Hans Christian Ørsted solved it when he stole the credit for Gian Domenico Romagnosi's discovery that an electric current created a magnetic field. Such fields are easy to detect because they make a magnetic compass go crazy.

The second big problem was that the signal died if the wire was longer than a couple of hundred feet. A semaphore can send a message ten miles, you can shout a message farther than 200 feet. The fix was not discovered until later, don't worry, I'll get to it.

In the 1820s Samuel F. B. Morse enters the scene. He was a painter until his life got derailed. He was in Washington painting a commission when he got a letter that his wife was very ill. Unfortunately by the time he got to Connecticut his wife had not only died, she was already buried. This got him justifiably angry at the snail-like pace of horse messengers, and he vowed to discover a faster method. In 1832 he was returning to the US from Europe while working on a cockamamie scheme to show art from the Louvre to Americans (just the last in a long line of cockamamie schemes). On the boat he met a certain Dr. Charles Jackson and caught a bad case of Telegraph Fever.

Morse naively figured he was the first person in history to think of using electricity for a telegraph, blissfully ignorant of the fact that hundreds of scientists had been working on the same thing for the better part of a century. Unaware of the 200 foot wire problem, Morse instead studied the problem of how to encode letters in an electric wire (which had no little semaphore arms). All but the most unschooled readers have been mouthing the words "Morse Code" at this point.

Meanwhile in England William Fothergill Cooke got tired of making anatomical wax models of dissected cadavers for the medical training biz, and caught Telegraph Fever from a lecture about electricity. This set him on the path to become Mr. Morse's arch rival. Cooke teamed up with a famous British scientist Professor Charles Wheatstone. But Cooke was annoyed to find that Wheatstone had already been working on an electric telegraph. Cooke wanted to hog all the glory for himself. Eventually Cooke and Wheatstone would have a bitter battle over who actually invented the telegraph, but I digress. Cooke started the ball rolling by offering Wheatstone an insulting sixth share of the profits, and things only went downhill from there.

Both Morse and Cooke soon slammed into the brick wall of the 200 foot limit. Ironically the problem had been solved in 1829 by Joseph Henry. The trick is to put a relay where the signal dies, making a fresh new signal. Everybody in the scientific community on both sides of the Atlantic had known this for years, but Morse and Cooke were just amateur tinkerers. Cooke was rescued by Wheatstone (who was a member of the scientific community), and Morse was rescued by being introduced to Professor Leonard Gale (also a member of the scientific community).

They both finally managed to make working prototypes. Then they ran into the hardest problem of all: trying to penetrate the thick armor of industrial-grade stupid encasing the brains of the skeptics. The electric telegraph was a step too far on the abstract scale for the skeptics to see. At least compared to the dirt-simple straightforward semaphore tower. The semaphore towers were after all just a large mechanical version of a man waving semaphore flags, easy for skeptics to understand. But the skeptics could not see the point behind all this electrical wire dot-and-dash bull poop. Kind of like how newspaper and magazine companies in 1980 would scoff at the idea they would be driven into bankruptcy by this silly "internet" thing.

Both teams tried to find investors to fund a demonstration line in a desperate attempt to convince the skeptics. Alas willing investors were hard to find. As a side note, Morse and Cooke met each other as Morse was sniffing around for British investors, and immediately they had a cat fight. Morse gave up on Britain when he realized Cooke would sabotage any and all attempt to get British money. Morse had earned Cooke's undying hatred by being the second person threatening Cooke's monopoly of telegraph glory. Geez, what an asshat!

Eventually Morse managed to make a Washington-Baltimore line, and forced the skeptics to eat crow when he transmitted the names of the Baltimore Whig National Convention nominees to the Washington station sixty-four minutes before the info arrived by train. The skeptics were impressed in spite of themselves.

Cooke got a demo line working as well. It was thought to be an amusing but pointless gizmo. Until it gave the London Times a hot scoop of the birth of Queen Victoria's second son in forty minutes flat. The Times had nothing but good things to say about the telegraph after that. Three trainloads of Lords departed for Windsor to attend the birthday banquet, but the Duke of Wellington forgot his dress suit. He telegraphed London for it to be sent on the following train and again the telegraph proved its worth.

Sadly on both sides of the Atlantic, the respective governments were loath to fund the expansion of the telegraph system. But once private companies got their hands on the telegraph, they started making money hand-over-fist. Telegraph lines started to cross the US like cobwebs spun by hyperactive spiders strung out on crystal meth.

The Pony Express was founded in 1860 and could get a letter from St. Joseph Missouri to Sacramento California in ten days flat. It closed in October 26, 1861, two days after the telegraph line reached Sacramento.

In Britain the telegraph mostly spread along side the rail roads. It also spread across several European countries (who saw a new and improved way to make their iron grip on their provinces even stronger). With the exception of France. The French were still enamoured of their obsolete national semaphore system which had astonished the world, and were reluctant to replace it with some confounded foreign British contraption.

As telegraph networks reached the edge of national borders, treaties were made between nations to interconnect their systems. The first was between Prussia and Austria, and it was rather silly. Instead of directly connecting the telegraph wires across the border, they built a joint office straddling the border. A message would come down the telegraph line on one side, be written down, the clerk would walk the paper from one side of the office to the other (thus crossing the border), and the message would be telegraphed up the other telegraph line. Nations got real touchy about anything that would weaken their borders.

There was, however, one rather large obstacle. The Atlantic Ocean in general and the English Channel in particular. England was cut off from Europe, and the United States was cut off from everybody.

Laying underwater telegraph lines is a nightmare.

You can't use rubber, seawater corrodes it (which was good news to the gutta-percha merchants). The wire has to be heavy enough to sink. The water changes the electromagnetic characteristics of the wire, making the Morse code signals mushy. To the people of the time a transatlantic cable was akin to how we look at traveling to Alpha Centauri: it would be real nice but it ain'ta gonna happen for thousands of years.

In 1856 the newly-formed Atlantic Telegraph Company decided to try it anyway. Unfortunately their chief electrician was a crack-pot named Edward Orange Wildman Whitehouse. One can be competent in a field by educational experience or competent by practical on-the-job learning. Whitehouse had neither. His design for the cable was utterly wrong in practically every detail.

After about two years worth of effort, the blasted cable was finally laid all the way across the Atlantic. The world went wild! It was the greatest event of the century! And many suggested it would lead to a end to war, muskets being melted down and made into candlesticks. The telegraph was hailed as an instrument of world peace. Gee, that sounds familiar.

But Whitehouse's stinker of a cable never worked very well, and immediately started to deteriorate. Less than a month later it stopped working at all.

The world savagely attacked the Atlantic Telegraph Company. Some even suggested it was a hoax. A joint committee was appointed to get to the bottom of the mess (including committee member Professor Wheatstone). The star witness was Professor William Thomson (aka 1st Baron Kelvin), who conclusively proved the disaster was due to the incompetent Whitehouse and his near-terminal case of the Dunning-Kruger effect. Whitehouse was fired, and he reacted by immediately blaming everybody but himself and writing a pack of lies disguised as a book in a futile attempt at spin-doctoring his way out of the mess. It didn't work.

The Atlantic Telegraph Company had no trouble raising money for a second attempt (since the investors thought it was obviously all the fault of that lunatic Whitehouse, which was mostly true). This time the cable was professionally designed by Thomson. The cable was laid by the largest seagoing vessel afloat, the white elephant ship SS Great Eastern. After a few mishaps, the cable was successfully laid in 1865. It worked perfectly.

The very first day the cable earned an amazing one thousand pounds sterling in telegraph fees ($41,000 in 2010 dollars). And in a mere two years, the Atlantic Telegraph Company had earned enough profit to pay off all its monstrous debts. The cable was a freaking gold mine. Back in 1844 it took ten weeks to send a message from London to Bombay, now it took about four minutes to send a message and get the answer back. The world did some major shrinking. Businesses soon found it to be indispensable. The telegraph company was swimming in money.

The telegraph and submarine cable business was booming. Everybody wanted to invest, seed money came pouring in to lay more cables.

The sun never set on the British Empire, and they intended it to stay that way. England needed reliable telegraph lines to all its subject countries. And "reliable" meant not allowing the line to be vulnerable to other countries it happened to pass through. England created a special "intra-imperial telegraphy network" that other countries could not shut down. This increased the central control of London over the outlying British subject countries, and helped to protect Imperial messages from being spied upon by hostile nations. The intra-imperial telegraphy network had connections to various national networks, but would still still operate even if all the national networks were cut off.

Of course all the talk about the telegraph ushering in a new era of world peace was a steaming load of whale dreck. Improved communication with other nations just gives you new and improved reasons to be bigoted about those obnoxious creeps living in foreign parts. And when some paradigm-shifting shiny new tech toy hits the scene, there is always the same tired old song and dance. Pundits exaggerate the ability of the tech to improve the world, while being totally oblivious to how the tech enables so many new ways to be evil. The sad fact of the matter is that the type of people who are best at discovering the possibilities of a new invention are the crooks and con-artists. The telegraph opened up entire new categories for fraud, theft, and deception.

By the 1830s the semaphore system was being used to transmit stock market info, and about five minutes later it was being used for fraud. Evil bankers François and Joseph Blanc bribed a semaphore operator to transmit secret stock info using a clever system of coded transmissions disguised as "errors." The bankers watched the semaphore tower from a distance, for plausible deniability. They got away with it for almost two years before being caught.

Since telegraphs are incredibly faster than pony express, it can be used by crooks to exploit "information imbalance". This is where you have an advantage if you have access to secret information. Example: Horse races. If it takes the pony express three days to get name of the Derby winner to your sleepy little boondocks town, the bookies will let you place bets on a race that happened three days ago. Naturally the bookies will be enraged if you use the telegraph to find out the winner in advance, and place a huge bet where you already know the outcome.

My maternal grandfather managed to exploit this when he was a young man. He was on the street in California, in a crowd listening to the radio. The radio announcer was giving a play by play account of a baseball game happening in New York. Since my grandfather was a telegrapher for the US Navy, he could hear the Morse Code in the background. It was giving the baseball details, which were then decoded into English and given to the announcer. Which means my grandfather knew what the announcer was going to say half a minute in advance. He won quite a bit of money taking bets with other people in the crowd, before the crowd turned ugly and he decided to leave.

It took the lawmakers far too long to pass laws making it illegal to telegraph horse race results, a delay common with new technologies (and of course the main result of the law was to encourage the crooks to use secret codes). You may think technology outrunning the law started happening with Nigerian Email Scams on the internet, but Police Inspector John Bonfield was bitterly complaining about it in 1888. Everything old is new again.

In 1886 a crook named Myers tried to bribe a telegraph operator to delay transmission of horse racing results, allowing Myers to place bets on winning horses. When he was arrested, the authorities discovered there was no existing law he could be charged with. Delaying mail was illegal but the telegraphy hadn't been invented when the law was passed. Again the law had to be frantically extended to cover the new technology. It was too late to charge Myers, but in the meantime he managed to kill himself by ODing on laudanum.

The use of codes and cyphers in telegraph messages was forbidden, except by governments and telegraph officials. The Electric Telegraph Company used this to legally exploit information imbalance. They transmitted stocks and share prices that were public knowledge in London to the boondocks of Edinburgh Scotland, where the info was a valuable commodity. All in official code, of course. In Edinburgh bankers and merchants could obtain the information from the Electric Telegraph Company, for a fee.

The legality of secret codes started to become a tangled mess when telegraph networks of different nations became interconnected. The rules of each nation were contradictory. There were even rules about which languages were legal for telegraph messages. As more countries made bilateral connection treaties, the mess just grew. So in 1864 the French government hosted an international conference of twenty nations to sort things out. The result was the International Telegraph Union (ITU). One of the major results was that the no-code rule was killed, now anybody can use secret codes in their telegraph messages. And suddenly everybody did.

But besides secrecy, another reason to use codes was to cut down on your outrageous telegraph bill. You paid by the word. Non-secret code books (Brevity Codes) appeared on the market. They had about 50,000 code words along with associated messages. You saved 6 words by sending the code word GNAPHALIO instead of "Please Send A Supply Of Light Clothing." All you had to do was be sure your recipient had a copy of the same book, available at your local bookstore. Brevity codes were very popular with shipping managers and others who used underwater telegraph messages. Those cost an arm and a leg, about $100 per ten words (about 1,346.81 in 2010 dollars). Companies and industries started making their own customized codebooks, with vocabularies optimized for their specific needs.

There is a sample telegraph code book here, for your perusal.

For the paranoid, they used cyphers instead. This was more secret, but produced long strings of apparently random characters.

The telegraph operators became annoyed, because trying to read and send gibberish really made their lives harder, and drastically slows down your words-per-minute rate. Which costs the operators money, they get a bonus if their words per minute is over 40. The ITU came to the rescue with new rules. Codes were fine as long as the code words were pronounceable and no more than seven syllables. But gibberish cyphers were charged on the basis that every five letters counts as one "word." Since your average normal word is longer than that, bottom line is that sending cyphers was more expensive.

Predictably the code book makers tried pushing the envelope with some very hard to pronounce longish words that were technically only six syllables. In 1875 the ITU pushed back with a fifteen letter limit on code words. The result was words that were only 15 letters but still a nightmare to pronounce and send. So the ITU slammed back with a 10 letter limit AND the word had to be a genuine word of either German, English, Spanish, French, Italian, Dutch, Portuguese, or Latin.

A drawback of using brevity codes is that a one-letter mistake in sending a code word can catastrophically alter the meaning of the entire message. Which can result in very expensive mistakes. In 1887 a wool dealer named Frank Primrose send a coded telegraph message to his agent saying he had purchased 500,000 pounds of wool. "I Have Bought" was the code word BAY. The fumble-fingered telegrapher accidentally sent the words BUY, which means (surprise surprise) "buy". Morse for "A" is dot-dash, while "U" is dot-dot-dash. Very easy to make a mistake. The agent got the incorrect message and duly purchased 500,000 pounds of wool. Primrose lost $20,000 (about $270,000 in 2010 dollars). He sued the telegraph company, but unfortunately he had failed to pay the two cents extra for the message to be verified. So the court awarded him a refund of $1.15, the cost of the message.

New codes were devised where every single word in the code book differed from every other word by two letters or more, to prevent such disasters. If a letter got altered, the bogus code word would not be in the code book at all. Look-up tables in the back of the book allowed the receiver to puzzle out what the bogus code word originally was.

The trouble was is that the list of genuine ten letter words that differ by two letters or more is really tiny. There are not enough of them. So the code writers tried yet again to push the envelope by using deliberately misspelled words. The ITU tried to clamp down again by making an official list of allowed code words. But this proved to be impossible. So the ITU just gave up. Sorry telegraph operators, you are on your own.

Banks wanted to use the telegraph to transfer money, but they were afraid of bank fraud. They had a few cypher schemes but the schemes were not very secure. Things changed when a certain telegraph company named Western Union figured out a super-secure scheme using numbered codebooks (basically one-time pads) and passwords held by regional superintendents. Western Union had figured out how to "wire money."

There were some people who were married over telegraph, if the bride, groom, and minister could not be at the same location for some reason or other. One is reminded of the classic Star Trek episode Mudd's Women, where the lithium miners on the desolate planet Rigel XII married the women using Subspace radio marriage.

Telegraphers were part of a geeky closed community, where outsiders just didn't understand their world (much like modern-day computer hackers). Operators could often recognize other operators by their "fist," their idiosyncratic way of typing Morse Code. During slack times, bored operators would play telegraphic checkers and chat with each other. Many operators were women, commonly between eighteen and thirty years old and unmarried. Telegraphers would sometimes romance each other by telegraph and eventually marry (though occasionally the romances would abruptly end when the couple met for the first time and actually got to see each other).

In Terry Pratchett's novel Raising Steam, Adora Belle is the CEO of the Ankh Morpork semaphore company (the "clacks"). They have special lanterns so messages can be sent at night. She knows that at night lonely clacksmen and clackswomen would fraternize via the clacks during slack hours, and she approved. The clackspeople would woo each other over the clacks and marry, with the happy result of little clacksmen and clackswomen being born. The semaphore company needs all the clackspeople they can get. And a clacksperson marrying a non-clacksperson is an unstable marriage, best they marry each other.

Telegraphers were stratified by skill. They looked with scorn on the part-time operators in the small towns (sneeringly calling them "plugs" or "hams"). Your level in the hierarchy was measured by how many words per minute you could send and receive. First class operators could do 25 to 30 words per minute. The elite "bonus men" could do 40 wpm or more (and got a pay bonus as reward). The company didn't care if you were a man or woman (or even a child), the important point was your words per minute. Wandering operators going from job to job were called "boomers." No job interview, the company just set you down to a busy wire and saw if you could handle it or not. Because boomers knew they could find a job anywhere they were often itinerant and commonly suffering from alcoholism or mental health disorders (much like short order cooks according to Anthony Bourdain).

Telegraphers got their start at a young age, in some backwoods town filling in a position part-time. There were lots of books and pamphlets around teaching Morse Code. If they had some skill it was time to go to the big city. Actually it was well known that becoming a telegrapher was one of the best ways to escape from a sleepy little dead-end town.

A newbie at a telegraph company would often be subjected to a hazing ritual called "salting." The hazers would set the newbie down to a telegraph line, not knowing that the hazers had secretly put a hot-shot bonus man on the other end. The bonus man would start out slow, but then gradually go faster and faster until the sweating newbie had to give up. Ha-ha, gotcha kid! This didn't work when they tried salting young Thomas Edison. He was better than the bonus man. Edison sarcastically told the bonus man "Why don't you use the other foot?"

Unsurprisingly the telegraph revolutionized the newspaper industry. In the good-ol' days the news from foreign parts could be six weeks old, the advent of the telegraph created the new concept of "breaking news." The paper that got the news out first was the winner, which was a jolting development for the traditionally turtle-slow news media. On the plus side, fresh news on an event in progress could be reported in installments. The paper could put out four editions on a developing story and the news-hungry citizens would buy all four.

Newspapers sending separate reporters to an event was a waste of talent, so the papers formed groups to pool their resources and prevent duplicate efforts. The first one in the US was the New York Associated Press, you may have heard of it. Another news agency was founded in Europe by a fellow named Paul von Reuter, you might have heard of that one as well. Reuter had started before semaphore, using homing pigeons to send stock market quotes. With the rise of the electric telegraph, Reuter "followed the cable" and moved his operation to London.

During the Crimean War the British government found out the hard way that newspapers with timely news can give aid and comfort to the enemy. Before the telegraph the British War Ministry would routinely issue details of troop movements to the newspapers. This was safe because the papers would arrive at the target nations weeks after the troops. But now with the telegraph, enemy agents in London could read all the details in the Times and telegraph them directly to Russia at the speed of light. Russia could actually have the news before the commander of the British troops. Naturally when the War Ministry started to censor its reports, the Times became quite angry.

The Crimean War also gave the British and French troops a harsh introduction to the "back seat driver syndrome." They got the bright idea of laying a telegraph line into the Crimean peninsula. Up until now commanders in the field would be in charge, since orders from the capital can take weeks to arrive. But the telegraph meant the commanders found themselves being constantly second-guessed and micromanaged by the incompetent superiors in London and Paris, every fifteen minutes or so.

The telegraph also gave England their first taste of the Vietnam Effect, where the people at home were horrified at their first experience with instant news from the center of the battle. Until now news from the battlefront would take weeks to arrive, and be white-washed for public consumption. But now with the telegraph the news would be up-to-the-minute, and be the raw truth.

The war was badly organized due to government mismanagement (which was common). Pre-telegraph this didn't matter, the public never knew. But now reporters on the scene telegraphed in graphic exposés of soldiers being wrongly or inadequately equipped, with no proper medical support. The Times gleefully made this front-page news. This was an eye-opener for the citizens at home. It certainly put the British government on the hot seat.

Diplomats were also disrupted by the speed of the telegraph. Before they had the luxury of time to deal with any diplomatic incident, since it would take weeks for the news to reach back home. Now with the telegraph, the news was on the headlines the very next day, with the public screaming for an instant response. Worse, it would also be in the hands of other foreign governments, doing an end-run around normal diplomatic channels. The diplomatic embassies had to have dedicated telegraph lines installed, and senior diplomats in London had lines in their homes connecting them to the embassies.

With respect to empire building, note that both the Crimean War micromanagement and the diplomatic pressure had the effect of centralizing power in London.

The telegraph had a great run, but it started to decline in 1877. It was killed by a new tech toy, Alexander Graham Bell's "telephone." Which is currently in the process of being killed by radio, in the form of smart phones.

Clacks Tower

(ed note: the "clacks" network is a semaphore telegraph system. The quote echos the early days of computer hacker at MIT, where they were all young, obsessed with computers, and spoke in technical jargon. The reference to kids echos the early days of the electric telegraph. The "hour of the dead" is the hour each day used for tower maintenance.)

It was called the lucky clacks tower, Tower 181. It was close enough to the town of Bonk for a man to be able to go and get a hot bath and a good bed on his days off, but since this was Uberwald there wasn’t too much local traffic and – this was important – it was way, way up in the mountains and management didn’t like to go that far. In the good old days of last year, when the Hour of the Dead took place every night, it was a happy tower because both the up-line and the down-line got the Hour at the same time, so there was an extra pair of hands for maintenance. Now Tower 181 did maintenance on the fly or not at all, just like all the others, but it was still, proverbially, a good tower to man.

Mostly man, anyway. Back down on the plains it was a standing joke that 181 was staffed by vampires and werewolves. In fact, like a lot of towers, it was often manned by kids.

Everyone knew it happened. Actually, the new management probably didn't, but wouldn’t have done anything about it if they’d found out, apart from carefully forgetting that they’d known. Kids didn’t need to be paid.

The – mostly – young men on the towers worked hard in all weathers for just enough money. They were loners, hard dreamers, fugitives from the law that the law had forgotten, or just from everybody else. They had a special kind of directed madness; they said the rattle of the clacks got into your head and your thoughts beat time with it so that sooner or later you could tell what messages were going through by listening to the rattle of the shutters. In their towers they drank hot tea out of strange tin mugs, much wider at the bottom so that they didn’t fall over when gales banged into the tower. On leave, they drank alcohol out of anything. And they talked a gibberish of their own, of donkey and nondonkey, system overhead and packet space, of drumming it and hotfooting, of a 181 (which was good) or flock (which was bad) or totally flocked (really not good at all) and plug-code and hog-code and jacquard (punch cards) . . .

And they liked kids, who reminded them of the ones they’d left behind or would never have, and kids loved the towers. They’d come and hang around and do odd jobs and maybe pick up the craft of semaphore just by watching. They tended to be bright, they mastered the keyboard and levers as if by magic, they usually had good eyesight and what they were doing, most of them, was running away from home without actually leaving.

Because, up on the towers, you might believe you could see to the rim of the world. You could certainly see several other towers, on a good clear day. You pretended that you too could read messages by listening to the rattle of the shutters, while under your fingers flowed the names of faraway places you’d never see but, on the tower, were somehow connected to...

Grandad had been hunched in the corner, repairing a shutter box in this cramped shed halfway up the tower. Grandad was the tower-master and had been everywhere and knew everything. Everyone called him Grandad. He was twenty-six. (many of the early top hackers were in their teens)

'I can’t stand this,' muttered Grandad. 'Roger, let’s get this tower working again. We’ve got local signals to send, haven’t we?'

'Sure. And stuff waiting on the drum,' said Roger.

Princess looked out from the upstream window. '182’s lit up,' she announced.

'Right! Let’s light up and shift code,' Grandad growled. 'That’s what we do! And who’s going to stop us? All those without something to do, get out! We are running!'

Princess went out on to the little platform, to be out of the way. Underfoot the snow was like icing sugar, in her nostrils the air was like knives.

When she looked across the mountains, in the direction she’d learned to think of as downstream, she could see that Tower 180 was sending. At that moment, she heard the thump and click of 181’s own shutters opening, dislodging snow. We shift code, she thought. It’s what we do.

Up on the tower, watching the star-like twinkle of the Trunk in the clear, freezing air, it was like being part of the sky.

From Going Postal by Terry Pratchett (2004)

Starship Couriers

If there are starships but no ansibles, or if the starships are much faster than ansibles, you will see the creation of ultra-fast manned message-courier FTL starships or unmanned FTL message drones. Much like the Express Boat Network in the Traveller role playing game or the unmanned Courier Drones from Starfire.


In the Traveller universe there are faster-than-light starships, but no FTL radio. You can use ordinary radio to communicate within a given solar system, but interstellar communication between solar systems has to be carried by starship.

The Imperial Interstellar Scout Service runs the Communication Office, which is charged with transporting messages across the parsecs of the Imperium as fast as humanly possible. This is performed with the Express Boat Network.

Even with the Express Boat Network, it can take up to four years for information to travel from the Imperial Core to certain backwater systems in the Marches (approximately 100 parsecs or 326 light-years).


The core of the Network is an ultra-optimized spacecraft called an "Express Boat" or "X-Boat". It literally cannot do anything except:

  1. Make one (1) FTL jump up to 4 solar systems over, expending all its fuel in the process
  2. Transmit its data upon arrival with a high-speed tight-beam radio transmission
  3. Supply the single crewperson with just enough life support to survive the trip

Since Traveller computers are primitive enough that they fill up a room, there is no such thing as an automated X-Boat. All X-Boats are manned by a crewperson.

Note that among the many standard starship parts the X-Boat does not have is a normal-space propulsion system (Maneuver Drive). In other words, once the X-Boat arrives, it cannot move. It has to wait to be rescued by an X-Boat Tender. Maneuver Drives have too much mass.

The extreme design of an X-Boat is due to the draconian mass-ratio of the 4-parsec FTL Jump Drive. Much like a chemical rocket, it is mostly fuel tank and Jump drive. Welded on the nose is a hab module containing the tight-beam radio, data bank for the messages, and cramped spartan living arrangements for a crew of one. In case of hull breech there is one (1) life support ball, but no spacesuit. In case of pirates there is one (1) pistol, but no ship weapon turrets. A turret also has too much mass.

X-Boat Tender

The function of an X-Boat Tender is to rescue the poor spent X-Boat, liberate the pilot, and either refuel/refurbish/re-pilot the X-Boat for its next trip or haul it to a way station for repairs. It carries four X-boat pilots, some recuperating (an FTL jump takes a week cooped up in jump-space) and some ready to go . Other items include huge fuel tanks, maintenance facilities, heavy-duty communication banks, and a crew of six. Tenders stationed in star systems of the lawless marches have jack-in-the-box weapon turrets, tenders in the civlized Imperial Core are unarmed.

The Tender places a ready X-Boat at the jump area. There the boat will wait on a hair trigger for a mail data dump from the station and an immediate jump.

In addition, an X-Boat Tender can carry up to four X-Boats in their huge hangar bays and transport them to another solar system. This capability also allows them to rescue X-Boats that are damaged or who mis-jumped to the wrong system.

X-Boat Station

The X-Boat Station is located in the outer part of the solar system, as close as is safe to the area where the X-Boats will arrive from Jump Space. Their main function is to receive the data dump from a newly arrived X-Boat with mimimal delay and to pass it ASAP to all fresh X-Boats poised to jump out to the next systems in the network. Messages brought by the arriving xboat and intended for further down the line are consolidated with the new data from in-system. Transfer time for messages from one xboat to another can be as short as ten minutes, and is rarely more than an hour.

The station also transmits the newly-arrived data to all inhabited planets in the system. Which is sort of the point behind having the express boat network in the first place.

In addition; the station has facilities for the refueling and repair of X-Boats and their tenders, and quarters for pilots and the station crew.

There is only one X-Boat Station per solar system in the network.

Way Station

These are larger stations which in addition to all the functionality of a small station is capable of performing major drive overhauls of X-Boats and other massive maintenance. One out of every eight to ten stations in the network are full Way Stations, the rest are just X-Boat Stations.

The X-Boat Network operates much the same as the ancient Terran Pony Express. An incompetent Professor Dinimbue of the University of Sylea botched the design of the X-Boat service emblem. She found the records of the Pony Express, but her poor grasp of the old Anglic language did not allow her to realize a "pony" is a small Terran horse. She mistakenly figured it was a reference to the beast of burden called the poni, common to several worlds of the Sylean Federation. You can see the silly result above.


(ed note: in the game Starfire, there are starships but no ansibles. Courier drones are automated unmanned missiles with FTL drives used to carry messages back to headquarters. Warships generally have a magazine full of these.)

At their option, players may invest in communication installations and create an Imperial Command and Communications Network, or "ICCN."

Communication and command may be thought of as two sides of the same coin. Command control is lost if the ability to relay information to the Imperial Command Center and then inform fleet units of changed orders does not exist: raw information without the capability of making decisions is of no value. Thus, the value of the ICCN lies in the faster reaction time it provides by transmitting important information to the Imperial Command Center and then, after a decision has been reached, quickly relaying new orders to the fleet.

When players comprehend the vast distances involved in a game of New Empires and realize how quickly a population may be conquered or destroyed, they begin to understand the substantial value the days saved by the ICCN in getting fleet units to the scene of an invasion may have.

There are, effectively, only two ways of communicating over distances within a star system: by spacecraft (including courier drones) or by light-wave (laser) or radio-wave transmission. The technology of courier drones is presented in the rule section on missile technology [see (E8.3)].

Communication through warp links is not possible with light or radio-wave technology. However, a pair of bases or other spacecraft which are equipped with communication modules may be positioned so that each end of a warp link has one of the spacecraft adjacent to it. Drones may then be exchanged through the warp link.

Once a drone has gone through the warp link and entered the system at the other end of it, it will transmit its message, which is picked up by the communication module of the spacecraft adjacent to the warp point at that end of the link. This spacecraft in turn transmits the message at the speed of light to any point in the star system within its range by using the transmitters of its communication module. In this case, the drones are assumed to be programmed to stop near the spacecraft to which they transmitted their message, and may then be recovered to be used again.

The time required for a message to travel through a given star system is assumed to be six hours. The only instance in which more detailed calculations are required or allowed is if enemy spacecraft groups are involved at the system level of play and the exact time taken for the communication to reach its destination may make an important difference to the outcome of the action.

Drones may also be used for communication without the aid of wave transmission; but communicating in this manner is much slower and much less reliable (the communication may be intercepted and destroyed). Drones are normally used as the sole means of communication only by exploration ships or by units whose connecting warp links have not yet been integrated into the ICCN.


All communications are channeled to a player's designated Imperial Command Center. At an Imperial Command Center, decisions are reached and new orders to be communicated to fleet units are written. (The Imperial Command Center represents a political and military command complex).

All fleet units must attempt to move as ordered until communications from an Imperial Command Center containing changed orders are received by the units. Contingency orders may be issued by the Command Center to allow the fleet unit to react to certain types of information gained without relaying this information to the Command Center; but these contingency orders must be executed to the letter of the manner in which they were written.

When information is received by an Imperial Command Center, a six-sided die should be rolled. The die-roll result represents the number of hours required for the Command Center to reach a decision based on the information. At the end of this time period, the Command Center issues new orders which are transmitted to the fleet units.

Example of the ICCN: This example uses the map and situation shown above. A major enemy force is invading system #004 and is attempting to move into the homeworld system, #001. The survival of the player's empire may depend on whether forces in system #003 can be diverted by new orders to move into system #002 and head off the invasion.

First, the player controlling starship force "A" picks up the invading force on the science instruments modules of this force. Force "A" then moves toward the unknown starship group to bring its scanners into range to identify the threat posed.

At 10-11:35:00 (Day 10 at 11:35 AM), the long-range scanners of starship force "A" identify 50 starships (the types of which are not yet known) and launches a courier drone to alert the Imperial Command Center. This drone is unopposed at the tactical and interception levels of play, since it was launched from a point beyond weapons range.

The drone's movement is simulated at the system level of play, beginning with the system impulse of 10-12:00:00 and the system hex of launch. At the time of launch the courier drone is at a distance of 12 system hexes (72 light-minutes) from the warp point between star system #004 and #002. The drone travels this distance in six hours at its speed of "12," arriving at the warp point at 10-18:00:00.

Upon reaching this warp point, the courier drone is instantly moved through the warp link and into star system #002. In this system there is a communication base heated in the same system hex as the warp point (actually in the same tactical hex), and this base activates the transmitter of the drone and receives its message at 10-19:00:00 (rounding up to the next system-level impulse).

The message is then transmitted by the ICCN. It is relayed through the warp link between star system #002 and #001 by the communication bases adjacent to the warp points of this link, and finally reaches the Imperial Command Center 12 hours later, at 11-07:00:00.

The Imperial Command Center takes three hours to reach a decision based on this message (the player rolled a "3" on a six-sided die). New orders are then issued to divert starship force "B" to system #002, and these orders are entered on the ICCN at 11-10:00:00.

The new orders are received at the warp point in system #003 12 hours later, at 11-22:00:00. (It takes six hours for the transmission to travel across system #001 from the Imperial Command Center to the warp point, plus six hours to travel from one warp point to the other in system #002.)

Fortunately, starship force "B" has a spacecraft equipped with a "CC" (long range communication) module. This spacecraft is at a range of 12 system hexes from the warp point, and so receives the message 12 minutes later, at 11-22:12. Force "B" will move at the system level of play, and thus 11:22:12 is rounded up to 11-23:00. The orders for starship force "B" are changed as of the beginning of system impulse of 11-23:00:00.

Moving at a speed of six, force "B" enters the warp link into star system #002 at 12-11:00:00.

Is force "B"in time to intercept the invasion force? That depends on many factors. However, the total reaction time is roughly 36 hours between the time starship force "A" launches its courier drone and the time starship force "B" is ordered to attempt to intercept the enemy force by entering star system #002. This means that force "B" has a good chance of making the interception.

In the 36 hours required to react, the enemy fleet cannot move more than a total of 36 system hexes at a speed of six, including the 12 system hexes it has to traverse before reaching the warp link into star system #002. Thus, even if the enemy group has complete astrogation information (which would be an unusual occurrence) and so knows exactly where the correct warp link is located, the force can be no further than 24 hexes into star system #002 when starship force "B" is ordered to react.

If the ICCN had not been available and the communication had been relayed solely by courier drones or by even slower spacecraft, the amount of time required to receive the information and to transmit the new orders would have been much longer — days longer — even though the time required for the Command Center to reach a decision would be unchanged. The edge of survival might be riding on those hours and days saved.

The gadgets, four in number, were built as simple as possible. Inside a torpedo shape — a hundred and twenty centimeters long but light enough for a man to lift under Terran gravity — were packed the absolute minimum of hyper-drive and grav-drive machinery; sensors and navigational computer to home on a pre-set destination. radio to beep advance notice when it neared; accumulators for power and a tiny space for the payload, which could be a document, a tape or whatever else would fit.

From THE WHITE KING'S WAR by Poul Anderson (1969)

     The Finns knew the Guardians had won. It was over. The Guardians had taken the planet's surface, and now the surrender of the great satellite Vapaus would go into effect in a few hours. The Guardians themselves had caused a delay of the surrender by insisting it be negotiated strictly in English. The Finns, desperately playing for time, stalled for as long as possible, taking hours to search for the English-speaking officer they could have produced in moments. The time was put to urgent use. The last, the only hope, thin though it might be, was the League. Word had to be sent.
     Six of the last torpedoes were stripped of armament. Light-speed-squared generators and radio beacons were installed. Recordings that held the vital knowledge of the anti-ship missile system, and what little information the Finns had on the Guardians, were placed aboard.
     Word had to get through.
     The Guardians had not yet closed the ring around Vapaus. Three tiny one-man ships were launched from the Forward airlock complex, each with two torps strapped to jury-rigged harnesses amidships. The little ships launched at six gees, to fly straight through the Guardian fleet. The enemy's radar was too good to be fooled by any feinting maneuver; speed was the only protection.
     It was not protection enough. The lead ship was destroyed in seconds by laser fire from a troop transport. The Finnish pilot's last act was to blow the fusion engines; the resultant explosion created a plasma that jammed every radar screen and radio within a thousand kilometers. That gave the two remaining ships their chance as they flashed into and beyond the gathering fleet.
     They dove down to lower orbits, rushing to get the sheltering bulk of the planet between themselves and the enemy's radar before it could recover from the explosion the Finns' lead ship had died in. They fell toward the planet, gathering speed for a gravity-assist maneuver. One hundred eighty degrees around the planet from the satellite Vapaus, they both changed course, maneuvering violently, one coming about to fly a forced orbit straight over the planet's North Pole, the second heading over the South Pole.
     As soon as the ships had reached their new headings, they cut their engines for a moment, and each released a torp. Then the two ships and the two released torpedoes ignited their engines and flashed on into the sky, the torps holding course, the ships again changing their headings.
     The southern ship was caught and destroyed by a Nova fighter scrambled from the planet's surface. The northern ship released its second torp and came about, one final time, to act as a decoy for the torps.
     Soon, all too soon, another fusion explosion lit the sky, marking the point where a Guardian missile had found the last Finnish ship.
     The Guardians tracked only the last torpedo launched, and they were able to destroy it.

     Of the six torpedoes, two now survived, undetected. Engines still burning, they curved around the world in exactly opposite directions, one over the South Pole, one over the North, their courses bent by the planet's gravity until they came about to identical bearings.
     The torps cut their engines precisely over the Poles, just as they reached escape velocity.
     Each now rose on a straight-line course starting from a point directly over a pole and parallel to the equator, the paths of the torps also parallel to each other.
     Engines stopped, they rushed through space, coasting, trusting to the cold and dark of the void to hide them.

     Hours after launch, when they were hundreds of thousands of kilometers beyond the orbit of the moon Ku, celestial trackers on each torp examined the starfield. The maneuvering thrusters fired fussily and touched up the torps' headings. The two torps were now on precise headings for the Epsilon Eridani star system, where the English had their colony world, Britannica. The torpedoes were still far too close to New Finland's sun to go into light-speed-squared. For long weeks they coasted on into the darkness, while behind them, the Guardians worked their horrors on the Finns.
     On one torp, the power system failed and the torp became another of the useless derelicts in the depths of space.
     But the other torp, the last one, held on to life. And at the proper moment, the light-speed-squared generator absorbed nearly all the torp's carefully husbanded power and grabbed at the fabric of space around the torpedo. The last torp leaped across the dark between the suns.
     Soon after, with weak batteries, the radio beacon barely detectable, the torpedo drifted into the Epsilon Eridani system.
     Just barely, the last torp made it.

From THE TORCH OF HONOR by Roger MacBride Allen (1985)

Star Mail

For some ideas about how a planetary and interstellar postal service can help a fallen civilization climb out of a dark ages, read David Brin's novel The Postman.


(in the year 1644) Ricci, realizing that current Church opinion in Rome would not take kindly to these arguments (since if they were true several things followed, such as the existence of interplanetary vacuum, with sunorbiting planets), made a copy of Torricelli’s letter and sent it to a priest in Paris, Father Marin Mersenne. This man was an extraordinary Minorite friar who ran a kind of scientific salon, to which came many of the more radical thinkers of the day. Following his habit of copying letters he received and circulating them among his many scientific contacts throughout Europe, Mersenne became known as the postbox of Europe.

(ed note: copying and forwarding letters is much like David Gerrold's system with Oracle tabs)

In the fifth century, as the legions began to withdraw to protect Rome, the Germanic tribes which had been in contact with the Empire for over two hundred years gradually consolidated their position. In the province of Gaul they had held high administrative positions since the fourth century. When the so-called barbarians invaded in the fifth and sixth centuries they were fighting Romanized Franks or Burgundians, not Romans. And with the armies gone and the local populations so long forbidden to carry arms, resistance was apathetic. Small city-states sprang up. The great estates, established as part of the imperial economic structure, had no further raison d’étre, and they gradually ran down. The imperial roads (equivalent to starports and starships) were too expensive to keep in repair when there were no legions to use them. They served no local purpose, and life had become local, so they too fell into disrepair. Economic activity dropped sharply as the province split into tiny self-sufficient units under local kings, and especially during the plagues of the sixth and seventh centuries when the population of Europe was halved.

The network of communications that maintained contact between one part of this patchwork quilt of territories and another was that of the Church. By the fifth century the diocesan organization of the ecclesiastical hierarchy corresponded to the concentrations of civil population. When the legions withdrew, the administration of the area fell into the hands of the bishops and their clergy: they could read and write and the new rulers could not. For this reason the Church was granted many privileges, in particular exemption from taxes, that helped it to survive, while the Church itself exacted a tax of one-tenth (a tithe) from its own tenants. By the eighth century Europe was scattered with churches and monasteries, many of which had to provide a service that no one civil community could have done, in the absence of a centralized power: they ran the mails. A new church or monastery was called upon to provide pack horses or messengers, and in some cases a freight service of wagons, within a radius of up to 150 miles from the church. It would seem that the Church had a bishop-to-bishop communications network that continued to operate right through the Dark Ages, connecting one kingdom with another, carrying news and information as well as ecclesiastical business, and transmitting knowledge in the form of copies of manuscripts.

(ed note: of course copying manuscripts is much easier if you have a master copy, access to a supply of empty USB flash drives, a computer, and some electricity. Or an Oracle with blank Oracle tabs.)

From CONNECTIONS by James Burke (1978)

Hyperspace Radar

There is another "communication-like" consideration. If you have FTL starships, and you want your universe to contain FTL starship battles and also have interstellar empires, you need Strategic FTL Sensors. This means the communication-esque function known as "detection" must be capable of spotting hostile incoming starships early enough for the defenders to muster their defenses. Otherwise FTL starship battles will only occur by mutual agreement. And there will be no interstellar empires because enemy FTL starships will be able to drop a planet-buster on all the empire's planets before the empire knows what is happening. Meanwhile the empire's FTL starships will be returning the favor.

As discussed in the Strategic Sensor link, the two traditional methods are Jump Points "choke points" at some distance from habitable planets and FTL "radar" that can detect enemy ships in time to send your interceptors.

Interstellar Publication

Propagating data via physical books (perhaps printed on bamboo paper), USB flash drives containing eBooks, or other material non-cloud non-broadcasty item is much slower than distribution by the local equivalent of the internet.

But it has advantages:

  • It does not require the existence of an FTL internet (in case the science fiction author does not want their empire having that high a tech level, or FTL WiFi is forbidden by the laws of physics)

  • It does not require the local infrastructure of the unindustrialized newly colonized planet to be high enough to support an FTL internet. A tech level equivalent to 2000s USA will do for USB Flash Drives. Or a tech level of 1400s Europe for printed books.

  • It can be (slowly) propagating by unorganized random starships carrying the books, after the galactic empire declines and falls

In the Dark Ages scenario, isolated planets will have their local languages drift and change over the centuries. The language used on the books may become sort of a Lingua franca, much like the Roman Empire language Latin did during the medieval era after Rome fell.


The races of man had spread across the spiral arm and toward the great whorl of the central galaxy.

By the year 970 H. C. (Calendar of the Holy Church), date of the last known Empire Census, there were more than 11,000 inhabited planets in the Empire, plus a known 1,700 more on the frontier—and estimates of at least 3,000 more beyond that whose existence was known but not confirmed. How many human beings there were simply could not be estimated.

Vast fleets of starcruisers whispered through the darkness, the fastest of them journeying a hundred light-years every three hundred days.

—but the Empire spanned a thousand light-years. More.

No matter how great the speeds of the starcruisers were, the distances of the galaxy were greater. At the fastest speed known to man it still took more than ten years to cross from one end of known space to the other. And the distance was growing. For every day that passed, 240 light-days were added to the scope of man's known frontiers.

Man was pushing outward in all directions at once, an ever-continuing explosion. For every ship travelling toward the galactic west, there was another headed for the galactic east; and the rate of man's outward growth was twice as fast as anyone could travel.

At the farthest edges of the Empire was the frontier. Beyond that lay unexplored space. Every man that fled into that wilderness dragged the frontier with him. The frontier followed willingly, and after a while, when that particular piece of itself matured, it became a part of the Empire, and the state of mind known as frontier had moved on. Thus, the Empire grew.

Even so, there were places where the Empire was only a dim legend. The further it reached, the more tenuous was its control. There were vast undeveloped areas within its sphere, areas that had simply been overlooked in man's headlong rush outward. Communications followed the trade routes, and there were backwaters in that flow of information.

News traveled via the Empire Mercantile Fleets, synthesized as Oracle tabs. Or via independent traders, synthesized as rumor. It leapfrogged from planet to planet, not according to any kind of system, but by the degree of mercantile importance in which any plan et was held by its immediate neighbors.

Every event was the center of a core of spreading ripples—unevenly growing concentric circles of reaction; like batons, the Oracle tabs were passed from ship to ship, from fleet to fleet, from planet to planet, passed and duplicated and passed again; taking ten, twenty or thirty years to work their way across the Empire. By the time any part of the human race received news from its opposite side, it was no longer news, but history.

The Empire's communications were the best possible, but they weren't good enough.

Control depends upon communication.

Weak communications means weak control, eventually no control at all.

Such was the state of the Empire at the time the skimmers became feasible. The Empire needed them.

They were the ultimate spaceship.

The Empire had always been unwieldy and unmanageable. By the year 970 H.C. it was not so much an empire as a loosely organized confederation. Lip service was paid to the idea of a unified central government for all the races of man, but the Empire was only as strong as its local representative.

Where that representative was only one agent with an Oracle machine and a twice-yearly visit from a trading ship, the Empire was a distant myth. Where that representative was an Imperial Fleet, the Empire was law. And there were all the possible variations in between. Some were just, some weren't.

The Empire passed no laws; they could not guarantee uniform enforcement. Instead, they wrote suggested codes of moral behavior for use by representatives of the Imperial Council. Agents of the Empire were free to apply them — or not apply them — as they saw fit. Or, at least to the degree that they could enforce them.

The Empire maintained few fleets of its own — and these stayed close to home. Instead letters of marque were issued.

Member planets and systems often had their own armadas to police their own territories. Often, those territories consisted of as much volume as those armadas could effectively patrol. Armed with letters of marque, these fleets were automatically acting in the name of the Empire. As agents of such, their duties were what ever their admirals wanted them to be. In return, the badge of the Empire made them — and their control — legal.

The local governments controlled the fleets, and in so doing, they wielded the real power. Some were just; some weren't. The Empire didn't care — as long as they paid their taxes. Most of them did.

In return, they received the benefits of Empire.

In addition to the implied legality of their regimes, they were automatically privy to the vast scientific and cultural library represented by the sum total of humanity. The Empire continually collected and distributed. It functioned as a gigantic clearing house of knowledge, literature, art and music. Member planets disseminated their contributions freely through the system — part of the price they paid for being able to tap the system in return. The exchange was always a bargain: the knowledge of one planet traded for the knowledge of a thousand.

Of course, there was a communications problem.

With eleven thousand inhabited planets (at last known census), that implies eleven thousand local languages. At least.

More than a few of those planets were divided into nations. More than a few of those nations were multi-cultured. Many of those cultures had several different languages — technical, literate, colloquial and argot. Plus subdivisions. Not to mention dialects.

So the Empire distributed the Oracle machines, gave them out freely to its member states. The standardized keyboard-and-scanning-plate configuration of the machines was familiar from one end of known space to the other; anyone with access to an Oracle and a translating tab could read information out of any other stasis bite in existence.

(ed note: So Oracle tab "stasis bites" are like USB flash drives containing eBooks,

translating tabs are flash drives containing an Oracle format Interlingua-to-your-language translation database,

and the Oracle proper is like an eBook reader.

Unlike contemporary data formats, the Oracle format has been frozen for hundreds of years. This is to avoid the data migration problem, e.g., why you cannot read the data on your old floppy disks.)

The Empire hadn't collapsed overnight, but just how long the collapse had taken and to what extent it had occurred, no one knew.

The collapse of the Empire meant the collapse of organized communications.

A few straggling ships every now and then, some unreliable rumors, and the occasional wisp of years-old radio waves — too many member planets knew too little of what had happened.

But even as the Empire died, it was proving its power. It left as its legacy a universal standard for all men—the Oracle machines and the language.

Interlingua had been the language of trade and the language of science. Without the Empire, it was a dead language — but like a language called Latin known millennia earlier, it continued to be taught and used, first in the hope that the Empire might be resurrected, then later with the realization that the language was now the only link left to the other worlds of men. A man who spoke Interlingua could travel anywhere and survive. He could make his wants known, he could converse and he could trade.

Without the Empire, trade still continued—not on the same vast scale, of course, but between neighboring systems. It was enough to keep the language alive.

Interlingua was also the language of the Oracle machines; they still remained. The cultural heritage of mankind was not lost; it merely lay scattered across the galaxy in a thousand thousand machines and in a million million tabs. It was there for the asking — it needed only a man to reach for it. The knowledge waited for a man to begin the arduous task of once more gathering it all together.

From SPACE SKIMMER by David Gerrold (1972)

The demand for paper was high because it was comparatively cheap in relation to its competitor on the market, parchment. Between two and three hundred sheepskins or calfskins were needed to produce enough material for a large Bible, and the preparation of the skins was time-consuming and therefore costly. As the supply of the new linen rag paper increased, its price fell. By 1300 in Bologna, northern Italy, paper was only one- sixth of the price of parchment, and its price continued to fall. As Europe recovered from the plague and trade revived, the demand for manuscript went up to meet the increasing paperwork as the notaries produced the documentation that went with burgeoning business. The universities already had their own manuscript-copying departments, and in time private citizens went into the business. In the middle of the fifteenth century, for example, a certain Vespasiano da Bisticci ran a copying shop in Florence employing more than fifty scribes. Since the Black Death had killed off many of the literate members of the community, those who were left commanded astronomically high prices. The situation was clearly unacceptable: on the one hand scribes who cost too much, on the other, paper so cheap you could cover the walls with it. Craftsmen all over Europe must have been working on the solution to the problem, since in essence it was obvious: there had to be some form of automated writing.

The credit for the great leap of imagination that followed is usually given to a goldsmith from Mainz in Germany called Iohann Gansfleisch, better known to the world by his mother's family name which he adopted—Gutenberg...

(ed note: Gutenberg is usually noted at the one who introduced movable type and the printing press to Europe.)

The advent of printing, whether due to a German or a Dutchman—or even, as has been suggested, to an Englishman—was one of the most critical events in the history of mankind. Printing first and foremost made it easy to transmit information without personal contact, and in this sense it revolutionized the spread of knowledge, and craft technique in particular. “How to do it” books were among the first off the press, written about almost every field of human activity from metallurgy, to botany, to linguistics, to good manners. Printing also made texts consistent, by ending the copying errors with which manuscripts were rife. In doing so it placed on the author the responsibility for accuracy and definitive statement, since many more people were now likely to read his material who might know at least as much about it as he did himself. This in turn encouraged agreement on the material, and because of this, spurred academic investigation of subjects and the development of agreed disciplines. Just as learning became standardized, so did spelling. Authorship became an object of recognition, and this led to the concept of “mastership” in a subject, which in turn led to the fragmentation of knowledge into specialized areas, emphasizing the separation of the “expert” from the rest of the community. The earliest books would have been read by men who could doubtless as easily have turned their hand to the lyre or the sword or the pen or the architect's drawing, and it may be said that with the coming of the book they were the last generation to be able to do so. The new texts also conferred prestige on the inventor, who could now publicly claim association with his invention and expect to be identified with it. And as the books began to circulate, carrying ideas to readers who no longer had to have access to a manuscript copyist producing rare and expensive editions, the speed of change born of the interaction of ideas accelerated.

The coming of the book must have seemed as if it would turn the world upside down in the way it spread and, above all, democratized knowledge. Provided you could pay and read, what was on the shelves in the new bookshops was yours for the taking...

...By 1482 the printing capital of the world was Venice, and the busiest printer there was a man called Aldus Manutius who used to have a sign outside his shop saying “If you would speak to Aldus, hurry—time presses.” He had good reason. No single printer did more to spread the printed word than he. Aldus knew that his market, and the market of all printers, lay not in the production of expensive, commissioned editions of the Bible or the Psalms, but in an inexpensive format that could easily be carried in a man's saddlebag wherever he went. So Aldus made his books small, and cheap. The Aldine Editions, as his new format was called, were the world’s first pocket books, and they sold faster than he could produce them.

Nearly half his workers were Greeks, exiles or refugees from the Byzantine Empire after the fall of Constantinople to the Turks. So it was that with the help of his translator-craftsmen, Aldus began the task of translating the Greek classics. When he died, in 1515, no major known Greek authors remained to be translated. Whatever happened in the Greek world, Aldus had ensured that the classical authors would not once again be lost to the West, as they had after the fall of Rome.

From CONNECTIONS by James Burke (1978)

(ed note: This is from a satirical novel about a Victorian fantasy world where some dwarfs have invented the Printing Press. William de Word uses it to create the first newspaper)

     William stared down at the box of letters again. Of course, a quill pen potentially contained anything you wrote with it. He could understand that. But it did so in a clearly theoretical way, a safe way. Whereas these dull grey blocks looked threatening. He could understand why they worried people. Put us together in the right way, they seemed to say, and we can be anything you want. We could even be something you don't want. We can spell anything. We can certainly spell trouble.

     William wrote a short paragraph about Patrician Visits The Bucket, and examined his notebook.
     Amazing, really. He'd found no less than a dozen items for his news letter in only a day. It was astonishing what people would tell you if you asked them.
     He took it all down to the Bucket.
     Gunilla read it with interest; it seemed to take very little time for the dwarfs to set it up in type.
     And it was odd, but...
     ...once it was in type, all the letters so neat and regular... looked more real.

(ed note: I've noticed that phenomenon myself, when writing this web page)

From THE TRUTH by Terry Pratchett (2000)

Galactic Internet



Sub-Etha is an interstellar faster-than-light telecommunications network used by hitchhikers to flag down passing spaceships. The primary hitcher's tool is known as the Electronic Thumb, a short black rod that can be used to contact passing ships and ask to be let on board. Ford also carries a Sens-O-Matic, a device for monitoring ships' Sub-Etha signals, and learns from it that the Vogons are on their way to demolish the Earth.

Sub-Etha is used throughout the Milky Way for any kind of data transmission, such as listening to the news or updating the Hitchhiker's Guide to the Galaxy itself. (ed note: sort of like an intergalactic Kindle, using intergalactic WiFi)

The name is a reference to the ether, which was once believed to be a medium filling the universe. (ed note: Probably inspired by the "sub-etheric waves" from E. E. "Doc" Smith's Skylark series)


"MS Fnd in a Lbry" (probably intended to be understood as "Manuscript Found in a Library") is a satirical science fiction short story about the exponential growth of information, written by Hal Draper in 1961. The title is a play on "MS. Found in a Bottle", a story by Edgar Allan Poe.


The story is in the form of a report written by an anthropologist from an alien civilization who investigates the remains of human civilization several billion years into the future. It turns out that humankind's fall was brought about by information overload and the inability to catalog and retrieve that information properly.

The title of the short story comes from the fact that all redundancy - and vowels - had been removed from our language in order for the information volume to shrink. Finally the sum of all human knowledge (which was sort of finite) was compressed by means of subatomic processes and stored away in a drawer-sized box. However the access to that information required complicated indices, bibliographies etc., which soon outgrew the size of all knowledge.

The use of indices grew exponentially, comprising a pseudo-city, pseudo-planet and eventually a pseudo-galaxy devoted to information storage. At this point, a case of circular reference was encountered, and the civilization needed to refer to the first drawer-sized box to find the error. However, this drawer had been lost in the pseudo-galaxy, and soon the civilization fell apart while trying to locate the first drawer.

It turns out that the anthropologist's civilization is actually heading down the same path. Presumably, the report was given the name "MS Fnd in a Lbry" after the fall of the anthropologist's civilization by another anthropologist from another alien civilization that is also heading down the same path.

External links

From the Wikipedia entry for MS FND IN A LBRY

     "Right. Basically the macroscope is a monstrous chunk of unique crystal that responds to an aspect of radiation unrelated to any man has been able to study before. This amounts to an extremely weak but phenomenally clear spatial signal. The built-in computer sifts out the noise and translates the essence into a coordinated image...
     ..."Alien broadcasts. Artificial signals in the prime macroscopic band. A one-way contact. We can't send, we can only receive. We know of no way to tame a macron, but obviously some species does."
     "So some stellar civilization is sending out free entertainment?" His words sounded ridiculous as he said them, but he could think of no better immediate remark.
     "It isn't entertainment. Instructional series. Coded information."
     "And you can't decode it? That's why you need Schön?"
     "We comprehend it. It is designed for ready assimilation, though not in quite the manner we anticipated."
     "You mean, not a dit-dot building up from 2 / 2 or forming a picture of their stellar system? No, don't go into the specifics; it was rhetorical. Is it from a nearby planet? A surrender ultimatum?"
     "It originates about fifteen thousand light-years away, from the direction of the constellation Scorpio. No invasion, no ultimatum."
     "But — that's deliberate contact between intelligent species! A magnificent breakthrough! Isn't it?"
     "Yes it is," Brad agreed morosely. On the screen, the hulking mound of indolent probs continued its futile activity. "Right when we stand most in need of advice from a higher civilization. You can see why all the other functions of the macroscope have become incidental. Why should we make a tedious search of space, when we have been presented with a programmed text from a culture centuries ahead of us?"
     "What's stopping you then?"
     "The Greek element."
     "The — ?"
     "Bearing gifts; beware of."
     "You said the knowledge would not hurt us by itself — and what kind of payment could they demand, after fifteen thousand years?"
     "The ultimate. They can destroy us."
     "Brad, I may be a hick, but — "
     "Specifically, our best brains. We have already suffered casualties. That's the crisis."
     "What is it — a death-beam that still has punch after ten or fifteen thousand years? Talk about comic books — "
     "Yes and no. Our safeguards prevent the relay of any physically dangerous transmission — the computer is interposed, remember — but they can't protect our minds from dangerous information. Five of the true geniuses of Earth are imbeciles, because of the macroscope. Something came through — some type of information — that destroyed their minds. This alien signal caused a mental degeneration involving physical damage to the brain. All this through concept alone. We know the hard way: there are certain thoughts an intelligent mind must not think."
     "But you don't know the actual mechanism? Just that the beamed program — I mean, the radiated program — delivers stupefaction?"
     "Roughly, yes. It is a progressive thing. You have to follow it step by step, like a lesson in calculus. Counting on fingers, arithmetic, general math, algebra, higher math, symbolic logic, and so on, in order. Otherwise you lose the thread. You have to assimilate the early portion of the series before you can attempt the rest, which makes it resemble an intelligence test. But it's geared so that you can't skip the opening; it always hits you in the proper sequence, no matter when you look. It's a stiff examination; it seems to be beyond the range of anyone below what we term IQ one fifty, though we don't know yet how much could be accomplished by intensive review. A group of workmen viewed it and said they didn't go for such modernistic stuff. Our top men, on the other hand, were fascinated by it, and breezed through the entire sequence at a single sitting. Right up until the moment they — dropped off."
     "Yes. The question is, what is it hiding?"

     (Senator Borland)"You are able, with your macroscope, to inspect any point in space — or on Earth?"
     Brad nodded.
     "Naturally not," Borland was saying. "Certain persons might not take kindly to such observation. Some might even feel so strong a need to protect their privacy that they would institute stringent measures. Do you follow me?"
     "Yes," Brad said, his tone showing his disgust.
     "Now we've got the superscope, and we can diddle in our stellar neighbor's business, as though our own weren't enough. Now how do you figure a smart ET who likes his privacy is going to stop you from peeking — when there's maybe a fifteen-thousand-year time-delay?"
     The station personnel looked at each other in dismay. Obvious — yet none of them had thought of it! A mind-destroying logic-chain that wiped out the peeping tom, wherever and whenever he might be. The most direct and realistic answer to snooping... "A program," Borland said musingly. "A mousetrap in a harem. But why make up a show like that, instead of simply lobbing a detonator into the sun?"
     "Evidently the originator isn't against all life," Brad said. "This is selective. It only hits the space-traveling, macroscope-building species like ourselves. The snoopers. So long as we keep our development below a certain level, we're safe. You figure they're afraid of the competition from some smart-aleck new species?"
     "Fifteen thousand years late? And if we had a light-speed drive, which we never will, it would still take us another fifteen millennia to reach them. We can't even reply to their 'message' sooner than that. So it's really a delay of thirty thousand years. And I don't see how they could be sure we'd be ready to receive or reply in that time."
     "Could be a long-term broadcast. For all we know, it's been going on a million years," Borland said. "Just waiting for us to catch up. Maybe time is slower for them? Like fifteen thousand years being a week or so, their way?"
     "Not when the broadcast is on our time scheme. We haven't had to adjust to it at all. If they lived that slowly, we'd have a cycle running a thousand years, instead of a few minutes."
     "Maybe. You figure they're crazy with hate for any intelligent race, any time?"
     "Xenophobia? It's possible. But again, that time-delay makes it doubtful. How can you hate something that won't exist for tens of millennia?"
     "An alien might. His mind — if he has one — might work in a different way than mine."...
     Brad glanced at Ivo, saw that he wasn't leaving, and slapped a button under the table. The television screen that filled the far wall burst into color. All three rotated to face it.
     Shape appeared, subtle, twisting, tortuous, changing. A large sphere of red — he could tell by the shading that it represented a sphere, in spite of the two-dimensionality of the image — and a small blue dot. The dot expanded into a sphere in its own right, lighter blue, and overlapped the other. The segment of impingement took on a purple compromise.
     Ivo's intuition caught on. His freak ability attuned to this display as readily as it had to the game of sprouts. This was an animated introduction to sets, leading into Boolean Algebra, with color as an additional tool. Through set theory it was possible to introduce a beginner to mathematics, logic, electronics and all other fields of knowledge — without the intervention of a specific language. Language itself could be effectively analyzed by this means. One riddle solved; the aliens had the means to communicate.
     The colors flexed, expanded, overlapped, changed shapes and intensities and number and patterns in a fashion that to an ordinary person might seem random... but was not. There was logic in that patterning, above and beyond the logic of the medium. It was an alien logic, but absolutely rational once its terms were accepted. Rapidly, inevitably, the postulates integrated into an astonishingly meaningful whole. The very significance of existence was —
     Ivo's intuition leaped ahead, anticipating the denouement. The meaning was coming at him, striking with transcendent force.
     He knew immediately that the sequence should be stopped. He tried to stand, to cry out, but his motor reflexes were paralyzed. He could not even close his eyes.
     He did the next best thing: he threw them out of focus. The writhing image lost definition and its hold upon him weakened. Gradually his eyelids muscled down; then he was able to turn his head away.
     His entire upper torso dropped on the table. He was too weak to act.
     The Senator was slumped farther down the table. The doctor went to him next and performed an intimate check.
     "He's dead," he said.

     ..."No. But I'm convinced there is galactic information on that channel, if only we could get past the barrier. No one has ever looked beyond that opening sequence." Was there anything beyond, he wondered abruptly, or did it merely repeat endlessly?
     "It hasn't hurt you — yet. What possible thing could you learn worth the risk?"
     "I don't know." That was the irony of it. He had no evidence there was anything to find. "But if there is any help for us, that's where it has to be. They — the galactics, whatever they are — must be hiding something. Otherwise why have such a program at all? They can't really be trying to destroy us, because this is a self-damping thing. I mean, a little of it warns you off, just as it did for the probs. But the discouragement would really be more effective if there were no signal at all. The signal itself is proof there is something to look for. It is tantalizing. It's as though — well, interference." He hoped.
     "Interference!" she said, seeing it. "To prevent someone else's program from getting through!"
     "That's the way I figure it. Must be something pretty valuable, to warrant all that trouble."

(ed note: Ivo manages to skirt around the destroyer broadcast, to see what is on the other side)

     "And beyond it — I guess you'd call it the galactic society."
     "You saw who sent the killer signal?" Groton.
     "No. That's a separate channel, if that's the word. It's all done in concept, but one is superimposed upon another, and you have to learn to separate them. Once you isolate the destroyer, the rest is all there for the taking."
     "Other concepts?" Afra.
     "Other programs. They're like radio stations, only all on the same band, and all using similar symbolic languages. You have to fasten on a particular trademark, otherwise only the strongest comes through, and that's the destroyer."
     "I follow." Groton. "It's like five people all talking at once, and it's all a jumble except for the loudest voice, unless you pay attention to just one. Then the others seem to tune out, though you can still hear them."
     "That's it. Only there are more than five, and you really have to concentrate. But you can pick up any one you want, once you get the feel for it."
     "How many are there?" Afra.
     "I don't know. I think it's several thousand. It's hard to judge."
     They looked at him.
     "One for each civilized species, you see."
     "Several thousand stations?" Afra, still hardly crediting it. "Whatever do they broadcast?"
     "Information. Science, philosophy, economics, art — anything they can put into the universal symbology. Everything anybody knows — it's all there for the taking. An educational library."
     "But why?" Afra. "What do they get out of it, when nobody can pick it up?"
     "I'm not clear yet on the dating system, but my impression is that most of these predate the destroyer. At least, they don't mention it, and they're from very far away. The other side of the galaxy. So if it took fifteen thousand years for the destroyer to reach us, these others are taking twenty thousand, or fifty thousand. Maybe the local ones shut down when the destroyer started up, but we won't know for thousands of years."
     "I still don't see why," Afra said petulantly. She was less impressive when frustrated, becoming almost childlike. "It doesn't make sense to send out a program when you know you'll be dead long before it can be answered. Three million years! The entire culture, even the memory of the species must be gone by now!"
     "That's why," Ivo said. "The memory isn't gone, because everyone who picks up the program will know immediately how great that species was. It's like publishing a book — even paying for it yourself, vanity publishing. If it's a good book, if the author really has something to say, people will read it and like it and remember him for years after he is dead."

     He took her in, sliding delicately around the destroyer with less of the prior horror and finishing at the surface of the galactic stream of communications.
     "Oh, Ivo," she exclaimed, her voice passing back into the physical world and making a V-turn to reach him down his azimuth. "I see it, I see it! Like a giant rainbow stretching across all the stars. What a wonderful thing!"
     And he guided her down, seeking the particular perfume, the essential music, on through the splendor of meaning/color, to the series of concepts that spoke of the very substance of life.
     The patterns of import opened up, similar at first to those of the destroyer, but subtly divergent and far more sophisticated. Instead of reaching into a hammer-force totality, these delved into a specific refinement of knowledge — a subsection of the tremendous display of information available through this single broadcast. Ivo knew the way, and he took her in as though walking hand in hand down the hall of a mighty university, selecting that lone aspect of education that offered immediate physical salvation.
     "But the other doors!" she cried, near/distant. "So many marvelous — "
     He too regretted that they could not spend an eternity within this macronic citadel of information. This might be merely one of a hundred thousand broadcasts available — the number began to suggest itself as he grasped more nearly the scope of the broadcast range — yet it might have in itself another hundred thousand subchambers of learning. University? It was an intergalactic educational complex of almost incomprehensible vastness. Yet they, in their grossly material imperatives, had to restrict themselves to the tiniest fragment, ignoring all the rest. They were hardly worthy...

From MACROSCOPE by Piers Anthony (1969)

Atomic Rockets notices

This week's featured addition is Pulsed Solid Core Nuclear Thermal Rocket

This week's featured addition is Convair Electria spacecraft

This week's featured addition is the Lewis Research Center Mars Mission

Atomic Rockets

Support Atomic Rockets

Support Atomic Rockets on Patreon