People love to classify things. Pre-hominids seemed more primitive than prehistoric humans who had tamed fire. Natives armed with spears and arrows seem less technologically advanced than invaders armed with firearms. Steam power seems less technologically advanced than nuclear energy. So naturally historicaly-minded people tried to codify this into a scale of technological advancement, to conveniently classify various cultures at various times in their history. A scale of "tech levels" in other words.

Since many early researchers were regrettably Western-centric, they tended to visualize tech levels as a linear path (that is, the path followed by Western civilization). This is a gross simplification. Latter researchers studying a wider range of cultures (such as China) realized the linear path was a poor model. There is no particular reason why Louis Pasteur's germ theory of disease was formulated about the same time as the invention of the Gattling gun. In other cultures they might occur at widely separated historical periods.

A much better model is the multi-branched "tech tree." The technology required to make an iron sword has the prerequisite of a supply of iron and a furnace to heat it. Both of which require the technology of making fire. In addition iron requires the skills of prospecting and mining iron ore, plus the technology of smelting ore into ingots of pure metal. And so on.

The superiority of a tech tree over tech levels is that different cultures can travel over various branchces of a tech tree at different rates. So culture Alfa might have germ theory tech at the same time as gattling gun tech, but culture Bravo might develope gattling guns decades before germ theory.

The convoluted way that tech advances influence each other was the entire premise behind James Burke's documentary series Connections and The Day The Universe Changed, which you should watch if you haven't already.

The role-playing game Traveller popularized the use of tech levels in 1977. The tabletop boardgame Civilization popularized the use of tech trees in 1980. And pretty much every 4x game uses tech trees, with the items accessed by investing in tech research.

There is a chunky version of tech level displayed in the Kardashev scale. And do peruse the section on Alien Tech Levels.

Tech Levels

Technology Levels

"Technological advance is an inherently iterative process. One does not simply take sand from the beach and produce a Dataprobe. We use crude tools to fashion better tools, and then our better tools to fashion more precise tools, and so on. Each minor refinement is a step in the process, and all of the steps must be taken."
Chairman Shen-Ji Yang, "Looking God in the Eye"

In Hollywood, people seem to believe that technology starts at fire and ends in people turning into energy; the interim would follow the exact same steps on every possible world. Often, this takes the form of people not from Earth creating exact replicas of Earth technology right down to the last detail — such as interface panels ripped right out of the Apollo missions on an alien space station. These copies are often similar enough that people who are from Earth often have no trouble at all using the device, or even interfacing their own hardware with it.

Similarly, seemingly distinct and diverse technologies will always develop at the same rate. An alien world with "Renaissance-era" technology (ignoring for the moment that the Renaissance spanned four centuries and giant changes in technology) in, say, firearms will also possess lenses, ships, building materials, and mathematical principles identical to those that Earth (read: the inter-continental trade powers of north-western Europe) possessed along with said firearms.

It's only rarely that a civilization will break off the path, and usually as a result of external forces providing them with something outside their capabilities (intentionally, accidentally or incidentally), such as a 1920s planet with fusion power, or a 1700s planet with radios. However, mastering this technology does not actually give them an understanding of related concepts, or even concepts which would be required to use this technology in the first place (thus averting Possession Implies Mastery).

Remember, don't think path, think tree, just as with the evolution of biological lifeforms. Except, in this case the distant descendants of unrelated branches can inspire and influence the future of others. For inspiring viewing, see the James Burke documentary series Connections, which shows the sometimes ludicrously unlikely places where inspiration and discovery come from, and the web-like connections between seemingly-unrelated inventions.

I, for one, can only look forward to the day that crystal-based technology paves the way for our conversion into energy.

See also: Enforced Technology Levels, Evolutionary Levels, In Spite of a Nail, and Tier System. Contrast Schizo Tech, Aliens Never Invented the Wheel, Sufficiently Advanced Bamboo Technology, Alternate Techline, Anachronism Stew and/or Fantasy Gun Control.

This has some actual reference in the real world Kardashev Scale (how much total energy one gets to play with, no matter how). The other wiki used to have a list. See Abusing the Kardashev Scale for Fun and Profit for some fun speculation.

For a huge list of examples click here

Technology Levels entry from TV Tropes

Note that when an interstellar colony is established, the tech levels can become scrambled due to the colony infrastructure problem (e.g., horses make more sense than automobiles if the colony has no oil wells to produce gasoline).

Corporal Anuraro showed me how to get into the canoe without swamping it. We don't have those things in Arizona. As they paddled me ashore, I thought about how silly the situation was. I was being paddled in a canoe, a device invented at least ten thousand years ago. I was carrying a pair of light-amplifying field glasses based on a principle not discovered until after I was born. Behind me was a steamboat that might have been moving up the Missouri River at the time of Custer's last stand, and I got to this planet in a starship.

From WEST OF HONOR by Jerry Pournelle ()
Star Hero


     A useful concept in science fiction gaming is the technology level (or “tech level”), denoting what a given world or society can create or do, technologically. On contemporary Earth, we tend to use decades as rough indicators of technology — the United States boasts a “twenty-first century” military, while poorer and less advanced countries have “1960s-era” forces.
     Technology classifications tend to either be very broad or very narrow. An example of a broad schema is the notion of “Ages”: Stone Age, Bronze Age, Iron Age, Industrial Age, Information Age, PostHuman Age, and so forth. Broad technology schemes cover centuries or millennia, and they describe a whole suite of interrelated technologies and social structures. This usually implies that cultures develop along a similar path. Broad tech classifications also encourage cinematic-style invention and gadgeteering — if you’re an Industrial Age mechanic you can fix anything from an early steamship to a World War II fighter plane.
     Narrow tech scales are more useful in eras when technology changes quickly. A real-world example of this is the Gulf War of 1990, in which the 1990s-tech Coalition forces just walked over the 1980s-tech Iraqi army — using equipment which, by the standards of 2002, is often inferior or obsolete. This sort of system is appropriate to Cyberpunk or technothriller-style SF, in which hackers breeze through last year’s defensive software, and getting a beta-test copy of new intrusion programs can make a kid from the projects into a heavy hitter in cyberspace — for a few weeks, anyway. Obviously, narrow tech bands make it harder for a specialist trained in one tech level to work in others, and a character’s skills can get rusty in just a few years if he doesn’t study and stay current in the field.

Tech Scales

     Most technology-rating schemes have a “signature” technology which is the ultimate yardstick. If you have technology X, then you are tech level Y. The signature technology in a tech level rating system says as much about the people devising the system as it does about the cultures described. Archaeologists once classified Earth cultures by their artifacts, giving rise to the system of Stone, Bronze, and Iron Age. This works for archaeologists because they learn about cultures by examining things left in middens and tombs. By contrast, the Russian astronomer Kardashev classified civilizations by energy output, because energy emissions are what astronomers can detect. A culture interested in trade would rate civilizations by what they can make, while an aggressive conquering empire would be interested in the military potential of alien planets. Frequently space flight or interstellar travel are major demarcations in tech level. Sometimes a system combines two or more signature technologies for higher resolution.

Creating A Tech Scale

     Gamemasters devising a tech scale need to make three decisions:
  • Will the scale be narrow or broad?
  • What will the signature technologies be?
  • How will the levels be identified and/or labeled?

Alternate Tech Paths

     Human beings invented sailing ships before gunpowder, balloons before the germ theory of disease, and steam power before rocketry. But there’s no reason things had to happen in that order. The Greek scientists of Alexandria devised toys which contained all the principles of steam power almost two millennia before James Watt. An Egyptian doctor might have mixed saltpeter, sulfur, and charcoal thousands of years before the Chinese invented gunpowder. Hot-air balloons were possible a thousand years before the Montgolfier Brothers.
     Gamemasters can have a lot of fun mixing and matching technologies. Early development of steam power allows naval battles between steam-powered Roman galleys firing catapults at each other. Early ballooning lets one have knights, castles, and aerial reconaissance. But don’t forget that some technologies depend on others — germ theory requires microscopes, airplanes need internal-combustion motors, and submarines aren’t practical until they can use electric batteries.
     More exotic alternate technology paths could skip entire areas of knowledge — one common way to make an alien civilization alien is to give them a technology based on biology rather than inanimate materials and machinery. Instead of making a device to do something, they would breed an organism for it. Or maybe the aliens lack some device common on Earth. H.G. Wells’s Martians, for example, didn’t have the wheel.

Varying Tech Paths

     Within a given civilization, it’s entirely possible for the tech levels to vary from place to place. For example, the most advanced nations or regions on a particular planet might have Tech Level Theta devices, whereas less advanced or more isolated locations might only have reached Tech Level Delta. Similarly, Kalidar IV might possess extremely advanced technology, while Haroldson’s Planet is much less developed technologically. Not only is this realistic, it’s dramatic — it provides the GM with a lot of potential story and character hooks, all centered around the issue of why the differences exist. Do the Tech Level Theta regions actively oppress their neighbors, preventing technological development from occurring? Are those areas inhabited by two different species, with the more advanced imposing a technology embargo on itself to keep from interfering with the other? Has Kalidar IV historically been a haven for scientists and free thinkers, while Haroldson’s Planet persecutes them... or is Haroldson’s Planet a young colony on the fringes of the Galactic Commonwealth, whereas Kalidar IV is a Commonwealth core world?
     Nor do tech levels have to be uniform from one type of technology to another. Ordinarily advances in one field tend to lead to advances in other fields, so that technology progresses in a broadly uniform sort of way. But that’s not inevitable. A civilization could have, for example, Tech Level 15 computers and communications equipment, but only Tech Level 10 weapons. Again, the intriguing question is why this state of affairs exists. By considering and answering that question, the GM and players can develop the setting further, creating more opportunities for adventures and enjoyable characters.

Obsolete And Advanced Technology

     Often technologies introduced at an earlier tech level remain in use for long periods. Humans still use automatic pistols designed before 1900 (and still manufacture some, with minor improvements). Axes and hammers are among the earliest known tools, and are still available at the hardware store. In general, characters get no penalty using equipment from an earlier tech level. There are exceptions to this: some technologies become so obsolete that characters accustomed to a more advanced tech landscape are completely unfamiliar with them. Firemaking is a good example — until the invention of matches just about everyone could kindle a fire with flint and steel; now it’s something to study in wilderness-survival courses or historical reenactment workshops.

From Star Hero by James Cambias and Steven S. Long (2002)

Sample Level Charts

Traveller TL Historical Era
0 Stone Age (fire)
1 Bronze Age (3500 BC)
1 Iron Age (1200 BC)
1 Medieval Age (600 AD)
2 Age of Sail (1450 AD)
3 Industrial Revolution (1730 AD)
4 Mechanized Age (1880 AD)
5 Circa 1910 AD
6 Nuclear Age (1940 AD)
7 Circa 1970 AD
8 Digital Age (1990 AD)
9 Early Stellar (2050 AD)
10 (A) Early Stellar (2120 AD)
11 (B) Average Stellar
12 (C) Average Imperial
13 (D) Average Stellar
14 (E) High Stellar
15 (F) Imperial Maximum
16 (G) Darrian Historical Maximum

From Tech Level Comparison Chart

Quality of life Tech Comparison
000MusclesFingers and sticksRunnersMystics/HerbologyNatural (Caves, Huts)
11-31-3WaterAbacus / Geometry, TrigonometryLong Distance SignalingDiagnosisSettlements, Towns (Irrigation)
244WindAlgebraPrinting pressInternal AnatomyCities (Canals, Roads)
355Coal / SteamCalculusTelegraph, Audio RecordingSurgery Cement Structures
456ElectricityMechanical CalculatorsTelephoneVaccination, Antiseptics, AnestheticsCities in Rugged/Desert Terrain, Crude Terraform
566Petrochemicals, Internal combustionElectric CalculatorsRadio, RadarMass Vaccination, X-RaySealed/Conditioned Cities
667Nuclear FissionElectronic Computers (Large Model/1 bis)Television / Advanced Audio RecordingVirus, Crude ProstheticsSkyscrapers, Weather Predict, Underground Cities
777Solar energy, early Fuel CellsDesktop Computers, Expert systems, Model/2Early Satellite, Video recordingOrgan Transplant, Slow DrugsCities in Jungle Terrain
878GeothermalMassive Parallel / Low Data, Model/2bisFibre opticsArtificial Organs, MetabolicsOrbital Settlements, Early Weather Control
989Early Fusion, Improved BatteriesNon-Volatile / High Data, Vocal I/O, Model/3Video Telephone, Flat ScreenLimb Regeneration, Cryogenics, Fast DrugsArcologies, Orbital Cities
10910Fusion Plants 2KL MinimumEarly Synaptics, voice transcription, Model/4Holovision, Text TranscriptionAntiviral Vaccines, Cancer Cure, Growth QuickiningUnder-Sea/Under Ice Cities
11910Fusion Plants 1KL MinimumSynaptic Learning Processors, Hand Computers, Model/5Personal Global Communications Nerve Refusion, Artificial EyesGravitic Structure Support
121011Fusion Plants 250L Minimum, Advanced Fuel CellsLow Autonomous Robots, Model/6Real-time Multilingual TranslatorsBroad Spectrum Anti-toxins, Enhanced ProstheticsMajor Terraforming, Advanced Weather Control
131011Fusion output 3Kw per L, Miniature Super-BatteriesHolocrystal Storage, High Autonomous Robots, Model/7Holovideo RecordersCloning of Replacement Parts, ReanimationNon-mobile Gravitic Cities
141112Fusion Plants 100L MinimumComputer/Brain Implants, Model/8Early Meson CommunicatorsGenetic Engineering, Memory ErasureMobile Gravitic Cities
151212Fusion output 6Kw per LPseudo-Reality Computers, Pseudo Robots, Model/9Meson Communicators, Pseudo Reality CommunicationsAnagathics, Advanced Pseudobio ProstheticsComplex Terraforming Possible
161313Fusion output 7Kw per L, 80L MinimumLow Artificial Intelligence, Robots in all FacetsPersonal Meson Communicators, Personal HolovideoBrain Transplants, Crude Memory TransferGlobal Terraforming, Hostile Worlds
17 - -Early Antimatter PlantsHigh Artificial Intelligence, Self-Aware RobotsPocket Meson CommunicationsSelective Memory Erasure, Intelligent AnitbodiesTotal Terraforming to 800Km worlds
18 - -Antimatter 1Mw/L, 750L Fuel Pod MinimumRobots become Society's Basic WorkforcePartial Memory TransferTotal Terraforming to 4000Km worlds
19 - -Antimatter 2.5Mw/L, 200L Fuel Pod MinimumNon-Cryogenic Suspension, Advanced BioengineeringTotal Terraforming
20 - -Antimatter 15Mw/L, 40L Fuel Pod MinimumMatter Transport Eliminates Global Communication BarriersTotal Memory TransferMobile Worlds (Sublight)
21 - -Antimatter 50Mw/L, 5L Fuel Pod MinimumMatter Transport Eliminates Intra-System BarriersEarly Total RejuvenationMobile Worlds (Jump Space) & Rosettes
23 - -Dyson Spheres (with many Capsules)
25 - -Ability to create Ringworlds, access pocket universe
27 - -Rigid Dyson Spheres
35Create Pocket Universe
Transportation Tech Comparison
000Foot - AnimalsRaft / Canoe - -
11-31-3Wheel - Carts/ChariotsRowed Galleys, Crude Sailing Vessels - -
244Advanced Wheel - Moveable Axle, Replaceable RimsEarly Multi-Mast Sailing, Crude Navigation - -
355Extensive Road - High-Speed CoachMulti-Mast Sailing, NavigationHot Air Balloons -
456TrainsIronclads, SteamshipsDirigibles, Early Gliders -
566Ground Cars, Tracked VehiclesPersonal Self-Propelled Boats, Steel hulls, Early SubmersiblesAirplanes, SeaplanesEarly Rockets (unmanned)
667Amphibian Vehicles, ATVsAFVsSubmersibles, Scuba, Amphibian VehiclesEarly Jet, HelicoptersEarly Manned Rockets, Unmanned Rockets
777Hovercraft, High-Speed TrainsHydrofoils, HovercraftSupersonic Jet, Hang GlidersDeep Space Probes (Unmanned), Maneuver-1/2 (non-gravitic)
878Triphibian VehiclesTriphibian Vehicles, Early Artificial GillsTriphibian Vehicles, Hypersonic JetSpace Shuttles, Space Stations, Maneuver-3-5 (non-grav)
989Early Grav Vehicles, Ultra High-Speed TrainsEarly Grav Vehicles, Artificial GillsEarly Grav Vehicles, Rocket Assist SuborbitalJump-1 possible, Sublight Stellar
10910Grav VehiclesUH Grav ModulesGravitic Maneuver

Jump-1 certain

11910Personal G-Tubes, HV Grav ModulesJump-2, Thruster Technology
121011Personal Grav Belts, LT Grav ModulesJump-3
131011Grav Vehicles Merge with Orbital Spacecraft, Jump-4
16 - -Raw Material Only Short Range Matter Transport
17 - -Inanimate Only Short Range Matter Transport
18 - -Self-Aware Starships, living being portal based Matter Transport
21 - -Multi Parsec Range Starship-Sized Matter Transport Portals
Military Tech Comparison
- - -PersonalHeavy
000Club, SpearFur - -
11-31-3Early Weapons (Bow, Sword)Jack ArmourCatapultWood
244Early GunsSmall Cannons
355Rifled WeaponsCannons
456CartridgeMesh ArmourHowitzers, Gatling gunSoft Steel
566Explosive Grenade, ShotgunFilter MaskMortars
667Automatic (SMG)Nuclear Weapons, MissilesHard Steel
777Grenade LaunchersCloth Armour, Flack JacketBeam LasersComposite Laminate
878RAM Grenade Launchers, Early Laser CarbineParticle Accelerators, Target Desginated Missiles
989Laser WeaponsAblative ArmourLight Weight Composite Laminate
10910Advanced Combat RifleReflec, Combat Environment SuitPlasma Guns, RepulsorsCrystaliron
11910Combat ArmourMeson Guns
121011PGMP-12, Gauss RifleFusion GunsSuperdense Armour, Nuclear Dampers
131011PGMP-13, X-Ray LasersBattle DressX-Ray Lasers
141112FGMP-14Bonded Superdense
151212FGMP-15Early Black Globes
161313FGMP-16, Plasma Rifle, Neural GunNeural ShieldTractor BeamBlack Globes
17 - -Fusion Rifle, Plama PistolDisintegrators, Antimatter WarheadsCoherent Superdense
18 - -Disintegrator Rifle, Fusion PistolPersonal DamperLong Range Disintegrator/Tractor Beam
19 - -Disintegrator PistolProton Screen, Plastic Metal Armour
20 - -Relativity BeamWhite Globes, Proton Beam
21 - -Relativity RiflePersonal White GlobeJump ProjectorJump Damper
GURPS Tech Levels

From GURPS Wiki Tech Level

TL Era Timespan Signature technologies
0 Stone Age Prehistory and later Counting; oral tradition.
1 Bronze Age 3500 B.C.+ Arithmetic; writing.
2 Iron Age 1200 B.C.+ Geometry; scrolls.
3 Medieval 600 A.D.+ Algebra; books.
4 Age of Sail 1450+ Calculus; movable type.
5 Industrial Revolution 1730+ Mechanical calculators; telegraph.
6 Mechanized Age 1880+ Electrical calculators; telephone and radio;
7 Nuclear Age 1940+ Mainframe computers; television.
8 Digital Age 1980+? Personal computers; global networks.
9 Microtech Age 2025+? Artificial intelligence; real-time virtuality.
10 Robotic Age 2070+ Nanotechnology or other advances start to blur distinctions between technologies...
11 Age of Exotic Matter
12 Whatever the GM likes!
TL Transportation Weapons and Armor Power Biotechnology/Medicine
0 Skis; dogsleds; dugout canoes. Wooden and stone weapons; primitive shields; hides for armor. Human muscle power; dogs. First aid; herbal remedies; primitive agriculture.
1 Bare horseback; the wheel (and chariots); ship-building; sails. Bronze weapons and armor. Donkeys; oxen; ponies. Surgery; animal husbandry; fermentation.
2 Saddle; roads; triremes. Iron weapons; iron armor (including mail); siege engines. Horses; water wheels. Bleeding the sick; chemical remedies.
3 Stirrups; oceangoing sailing ships (longships, roundships, etc.). Steel weapons; early firearms; plate armor; castles. Heavy horses and horse-collars; windmills. Crude prosthetics; anatomical science.
4 Stagecoach; three-masted sailing ships; precise navigation. Muskets and pikes; horse artillery; naval broadsides. Improved windmills; belt drives; clockwork. Optical microscope makes cells visible.
5 Steam locomotives; steamboats; early submersibles; balloons and early airships. Early repeating small arms; rifled cannon; ironclads. Steam engines; direct current; batteries. Germ theory of disease; safe anesthetics; vaccines.
6 Automobiles; continental railways; ocean liners; submarines; aircraft. Smokeless powder; automatic weapons; tanks; combat aircraft. Steam turbines; internal combustion; alternating current; hydroelectricity. Antibiotics; blood typing and safe transfusions; heredity; biochemistry.
7 Nuclear submarines; jet aircraft; helicopters; manned space flight. Ballistic body armor; guided munitions; combat jets; nuclear weapons. Gas turbines; fission; solar power. Discovery of DNA; organ transplants; pacemakers.
8 Satellite navigation; SSTO ("single stage to orbit") spacecraft. Smartguns; blinding lasers; unmanned combat vehicles. Fuel cells; advanced batteries. Genetically modified organisms; gene therapy; cloning.
9 Robot cars; space elevators; manned interplanetary space flight. Electrolasers; heavy laser weapons; battlesuits; combat robots; designer viruses. Micro fuel cells; deuterium-hydrogen fusion; high-temperature superconductors. Human genetic engineering; tissue engineering; artificial wombs; cybernetic implants
10 Fast interplanetary space flight. Compact laser and heavy particle-beam weapons; Gauss guns; nanotech armor; nanoviruses; antimatter bombs. Helium-3 fusion; antimatter. Brain transplants; uploading; bioroids; uplifted animals.
11 Manned interstellar space flight. Compact particle-beam weapons; disassemblers ("gray goo"); defensive nanites. Portable fusion power. Living machines; cellular regeneration.
12 Faster interstellar space flight. Gamma-ray lasers; "living metal" armor; black-hole bombs. Portable antimatter power. Full metamorphosis; regeneration.
^ Reactionless thrust; contragravity; faster-than-light (FTL) travel; matter transmission; parachronic technology; time machines. Monomolecular blades; force-field technology; gravitic weapons; nuclear dampers; disintegrators. Broadcast power; cold fusion; zero-point energy; total conversion; cosmic power. Fast-growth clone tanks; psi drugs; regeneration ray.

Tech Trees

Technology tree

A technology, tech, or research tree is a hierarchical visual representation of the possible sequences of upgrades a player can take (most often through the act of research) in strategy computer games. The diagram is tree-shaped in the sense that it branches between each 'level', allowing the player to choose one sequence or another. Each level is called a tier and is often used to describe the technological strength of a player. Typically, at the beginning of a session of a strategy game, a player will start at tier 1, and will only have a few options for technologies to research. Each technology that a player researches will open up one or more new options, but may or may not, depending on the computer game, close off the paths to other options. The tech tree is the representation of all possible paths of research a player can take, up to the culmination of said sequence.

Types of tech tree

Classic Research Technology Tree

     The Classic tech tree is the one where extensive research into new technologies must be conducted parallel to the progression of a game. Some real-time strategy (RTS) games as well as most turn-based strategy (TBS) games employ this type of tech tree. In these games, players typically have a 'command center', 'unit-training-facility' and 'research facility' at their disposal from the start, allowing them to both start research into more advanced technologies, or engaging in combat with enemies using the basic units (Warzone 2100, Master of Orion series, Civilization series, Space Empires series).

Allocation Technology Tree

     In some games, the requirement of an actual research facility is absent. In this case players can allocate research points, or in-game resources to purchase new technologies. In some games the allocation yields direct results, meaning that procuring the new technology isn't paired with allotted time for the research of said technology to complete.

Building-based Technology Tree

     In most RTS games the technology tree consists of buildings which must be built in a specific sequence, which in turn unlocks new technologies. These newly unlocked technologies can be more advanced unit, upgrades for research or more advanced buildings. (StarCraft, Command & Conquer Series.)

Prerequisites for technology advances

     In most types of strategy games, the player needs particular buildings in order to research specific technologies or build specific advanced units (StarCraft, Total Annihilation), while in other games upgrades/technologies are unlocked through research of their parent technology research (Warzone 2100). In many TBS games the prerequisite is one or more lower-level technologies, with no dependency on specific buildings (Master of Orion series, Civilization series, Space Empires series). Most strategy games however use both systems. both requiring dedicated buildings and in advanced cases pre requisite technology, sometimes culminating in a game ending super-weapon of some kind.


     The structures of tech trees vary quite widely. In the simplest cases (e.g. Master of Orion) there are several completely separate research areas and one could research all the way up to the highest level in one area without researching other areas (although this would often be far from ideal). In more complex cases[citation needed] (e.g. Civilization) every technology above the starting level has more than one prerequisite and one has to research most of the lower-level technologies in order to research any of the top-level technologies. And there are many possibilities between these two variants, for example in Space Empires researching to a specified level in one field may enable the player both to research to a higher level in that field and to start research in a new field which was previously not available.
     Major 4X games like Civilization and Master of Orion have a much larger technology tree than most other strategy games; as an extreme example, Space Empires III has over 200 technologies.

Are all technologies available?

     Some RTSs make different techs available to different races or cultures (especially StarCraft; but many RTSs have special units or buildings for different cultures, e.g. Age of Empires expansion pack and later versions, Red Alert 2). Most TBSs make all technologies available to all cultures (e.g. Civilization). Master of Orion (original version) is a complex special case in this respect: the full tree is the same for all; but in each game each player gets a subset of the full tech tree that depends on which race was selected.

Balance between civilian and military techs

     In many RTS games tech advances are almost exclusively military (e.g. StarCraft). But in most TBS and some RTS games the research and production costs of top-end military techs are so high that you have to build up your economy and your research productivity first (RTS - Age of Empires and Empire Earth, where one of the most significant costs is going up an epoch; TBS - the Civilization series and Master of Orion series).

From the Wikipedia entry for Technology tree

Section of the tech tree for FreeCiv. Note the complex dependencies between technologies. Use horizontal scroll bar to pan the tree.


Research and technology

4X games typically feature a technology tree, which represents a series of advancements that players can unlock to gain new units, buildings, and other capabilities. Technology trees in 4X games are typically larger than in other strategy games, featuring a larger selection of choices. Empires must generate research resources and invest them in new technology. In 4X games, the main prerequisite for researching an advanced technology is knowledge of earlier technology. This is in contrast to non-4X real-time strategy games, where technological progress is achieved by building structures that grant access to more advanced structures and units.

Research is important in 4X games because technological progress is an engine for conquest. Battles are often won by superior military technology or greater numbers, with battle tactics playing a smaller part. In contrast, military upgrades in non-4X games are sometimes small enough that technologically basic units remain important throughout the game.

From the Wikipedia entry for 4X
Tech Tree

A staple of almost every strategy game is the ability for you to unlock new abilities for your units, or new unit classes entirely, by spending time and resources on scientific research instead of just bashing your opponent into submission with your existing ones.

Exactly how the tech tree works varies greatly depending on the game genre.

In Real-Time Strategy games, research is usually represented by specialized units or structures, with the pace of new tech development decided by how many of these the player has on the field. Research units often have weak attacking abilities (If they can attack at all) and must be protected from harm. Smart players and AIs will, of course, constantly be after these units.

New technologies typically allow for better armor to take more damage before dying, faster ground speeds, weapons that do more damage per hit, and increased sight and accuracy bonuses.

Tech upgrades are usually dressed to look genre-appropriate for the game. Researching advanced radar tech for your helicopters in one game will be instantly recognizable as granting your Paladins "Holy Sight" in another (or, in some cases, the same game).

Another key feature is that they usually follow a set order in which they must be researched. To give your troops armor-piercing shell upgrades, you may have to first research the advanced artillery tech, which in turn can't be done until you've finished researching basic cannon tech, etc...

Some games allow players greater influence over their gaming economies, and they can pour extra money into certain research projects to get them done faster while completing less urgent ones at their leisure.

Other times the development speed is static, and all that's required is that the player have enough gold, tiberium, wood, mana or whatever is needed to pay the upgrade costs for that tech.

The use of tech trees in 4X games is quite different. Tech trees typically do not have an on-map representation. They are a function of the empire itself. In such games, each empire's cities (or equivalent) provides some portion of research that is pooled until the civilization researches a particular technology. The rewards for a tech are improvements for "cities", new units or unit equipments, bonuses for a civilization researching them, or other such things.

Some Role Playing Games have the similar "Feat Tree", where at character creation time and at every Nth Level Up the player gets to choose new traits and abilities (feats) for their character, with some feats requiring other feats to unlock. Refer to Skill Scores and Perks for more information.

Tech trees are one of the big points where historians pick at games. It's a hierarchical view of science, research, and history. When compared with actual history, tech trees are wrong. On the other hand, the few attempts at doing something different have wound up pulled from any final version, with good reason.

Either way, researched technologies in many games, most often Real-Time Strategy, have an annoying habit of disappearing once the current level/mission is completed, forcing you to spend time researching them all again in the very next round.

See also You Have Researched Breathing, Reinventing the Wheel. A Tech Tree may be prone to Interface Spoilers, or conversely, it may become a Guide Dang It to make an informed decision.

For a huge list of examples click here

Tech Tree entry from TV Tropes
Value of Research 1

     “It’s clear enough for me to like it. You’d be surprised at the way the first part of the program ties in with stuff I’ve been working on for a long time. As for the other — untrammeled research into the completely unknown — you realize, of course, that if MetEnge participates fifty-fifty, DesDes will be on a non-retainer basis all the time you are out and will have to split fifty-fifty.”
     “But there isn’t going to be anything the least bit commercial about it!” Barbara protested.
     “You’re wrong there, young lady. Research always has paid off big, in hard dollars."

From Subspace Explorers by E. E. "Doc" Smith (1965)
Value of Research 2

Everybody has heard of the Long Range Foundation, but it happened that Pat and I had just done a term paper on non-profit corporations and had used the Long Range Foundation as a type example.

We got interested in the purposes of the Long Range Foundation. Its coat of arms reads: “Bread Cast Upon the Waters,” and its charter is headed: “Dedicated to the Welfare of Our Descendants.”

The charter goes on with a lot of lawyers’ fog but the way the directors have interpreted it has been to spend money only on things that no government and no other corporation would touch. It wasn’t enough for a proposed project to be interesting to science or socially desirable; it also had to be so horribly expensive that no one else would touch it and the prospective results had to lie so far in the future that it could not be justified to taxpayers or shareholders. To make the LRF directors light up with enthusiasm you had to suggest something that cost a billion or more and probably wouldn’t show results for ten generations, if ever … something like how to control the weather (they’re working on that) or where does your lap go when you stand up.

The funny thing is that bread cast upon waters does come back seven hundred fold; the most preposterous projects made the LRF embarrassing amounts of money — “embarrassing” to a non-profit corporation that is. Take space travel: it seemed tailor-made, back a couple of hundred years ago, for LRF, since it was fantastically expensive and offered no probable results comparable with the investment: There was a time when governments did some work on it for military reasons, but the Concord of Bayreuth in 1980 put a stop even to that.

So the Long Range Foundation stepped in and happily began wasting money. It came at a time when the corporation unfortunately had made a few billions on the Thompson mass-converter when they had expected to spend at least a century on pure research; since they could not declare a dividend (no stockholders), they had to get rid of the money somehow and space travel looked like a rat hole to pour it down.

Even the kids know what happened to that: Ortega’s torch made space travel inside the solar system cheap, fast, and easy, and the one-way energy screen made colonization practical and profitable; the LRF could not unload fast enough to keep from making lots more money.

I did not think all this that evening; LRF was just something that Pat and I happened to know more about than most high school seniors … more than Dad knew, apparently, for he snorted and answered, “The Long Range Foundation, eh? I’d almost rather you were from the government. If boondoggles like that were properly taxed, the government wouldn’t be squeezing head taxes out of its citizens.”

This was not a fair statement, not a “flat-curve relationship,” as they call it in Beginning Mathematical Empiricism. Mr. McKeefe had told us to estimate the influence, if any, of LRF on the technology “yeast-form” growth curve; either I should have flunked the course or LRF had kept the curve from leveling off early in the 21st century — I mean to say, the “cultural inheritance,” the accumulation of knowledge and wealth that keeps us from being savages, had increased greatly as a result of the tax-free status of such non-profit research corporations. I didn’t dream up that opinion; there are figures to prove it. What would have happened if the tribal elders had forced Ugh to hunt with the rest of the tribe instead of staying home and whittling out the first wheel while the idea was bright in his mind?

From Time for the Stars by Robert Heinlein (1956)

Warning Signs for Tomorrow

Anders Sandberg has created a brilliant set of "warning signs" to alert people of futuristic hazards. Some are satirical, but they are all very clever. There are larger versions of the signs here.

Rate of Technological Advance

Technology Readiness Level

Technology readiness level is a scale used to measure how close a new technology is to being ready for actual use in the field on a real mission.

Arms Race

In early pulp science fiction there were a couple of examples of tech level climbing that was totally out of control. An arms race on steroids. Arguably the most egregious was E. E. "Doc" Smith's Skylark of Space series, although John W. Campbell Jr's Mightiest Machine series gives it a run for the money. The super scientist hero and the super scientist villain frantically try to jump to the next tech step so they can vaporize their nemesis. But somehow their nemesis is only wounded, not atomized. Then its the nemesis' turn to make a tech jump.

In the first novel of the Skylark of Space series, the heroic Richard Seaton makes his first tech jump by inventing a potent power source and building a crude starship. By the last novel Seaton and his rival destroy an entire galaxy, star by star. That's a lot of tech jumps.

In my long and misspent youth I tried to make a tabletop wargame based on the Skylark of Space series. That's when I discovered the flaw in the situation: the novels have the arms race impossibly balanced. When each protagonist makes a tech level advance it is always just enough to threaten their opponent but not enough so they can squish him like a bug (which would prematurely end the series). Outside of a novel (where things are scripted) and into a wargame, it is far to easy for one player to jump up several tech levels at once and render their opponent helpless. Makes for a frustrating game.



A common failing of with those who write future histories is a failure to take into account Future Shock, that is, the rapid progress of technological advancement. Refer to the "Apes or Angels" argument. Consider that one hundred years ago the paper clip had just been invented, Marconi had invented the wireless radio, the Wright brothers had invented the airplane, and the latest cutting edge material was Bakelite. Assuming that technology continues to advance at the same rate, all of our flashy technological marvels of today will look just as quaint and obsolete in the year 2100. And in 2500, they will look like something made by Galileo.

Remember, this assumes that the rate of technological progress remains the same. The evidence suggests that the rate is increasing.

Authors who do not want to deal with such break-neck advances in technology will have to invent a way to put on the brakes to progress.


When it comes to futures histories in various SF novels, the main failing I have noted is a failure of scope. While you may read novels with orbital beanstalks, immortality drugs, virtual people living in digital cyber-reality, nanotechnology, transhumanity and post-humans, Dyson spheres, teleportation, zero-point energy, matter duplicators, time travel, cloning, and cyborgs; you almost never find an individual novel that has all of these things (although Greg Egan's DIASPORA comes close, and the Orion's Arm project comes even closer).

This is because future history SF novels are not meant to predict the future, so much as they are meant to illuminate a specific point the author is trying to make.

I am once again stunned at the insistence that Star Trek has to be allegorically relevant, but if it must, I'd prefer it take on more scientific/ethical issues, like a justification for banning genetic enhancement. or how a society with FTL, molecular replication, and teleportation has managed to sidestep a technological singularity.

Star Trek is considered by many to be the public face of SF, it's flagship. I hold by my belief that to retain that title it needs to take it up a level: travel out into some heretofore unexplored quadrant and find that it is heavily populated by Type II Kardashev cultures, Lovecraftian ancients, Kirby-esque star gods, Matrioshka brain AIs trying to tap reality's source-code, post-singularity societies like Banks Culture, Wright's Oecumene, or Hamilton's Edenists, etc.

In short, Trek needs to catch up with the rest of science fiction.

Far out in the uncharted backwaters of the unfashionable end of the western spiral arm of the Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly ninety-two million miles is an utterly insignificant little blue green planet whose ape- descended life forms are so amazingly primitive that they still think digital watches are a pretty neat idea.

From The Hitch Hiker's Guide to the Galaxy by Douglas Adams

INVENTOR n. A person who makes an ingenious arrangement of wheels, levers and springs, and believes it civilization.

From The Devil's Dictionary by Ambrose Bierce (1911)


Naturally, the more specific the details of your future technology that you describe in your SF story, the bigger the risk that it is going to sound quite silly in the decades to come. This is called "Zeerust", and of course TV Tropes has a page devoted to it just chock full of entertaining examples and associated tropes (food pills, jet pack, video phone, flying car, etc).

My favorite example is "Into the Meteorite Orbit" by Frank K. Kelly (1933).

It starts out so good. It predicts air-traffic controllers, the 22nd century as being dominated by the energy crisis, it even has the hero finding a recorded message on his video-telephone.

Then the reader's willing suspension of disbelief crashes and burns as the hero pulls the wax cylinder out of the video-telephone, puts it in the replay unit, and places the needle on the groove. Oops.

And then there were the slide-rules in a short story by A. E. Van Vogt, complete with a radio link to the ship's computer.

In "How to Build a Future", John Barnes suggests as a rule of thumb one shouldn't try predicting technological advances past 500 years or so. After about 500 years of technological epochs, the current technology approaches 100% magic as compared to the starting technology, as per his explanation below:


My experienced-based rule of thumb is that five hundred years is the absolute maximum.


I need not tell an SF audience that technological advance has dramatic effects. There are a lot of different ways to model it; this time I used the “shopping list” approach—gadgets are invented at a steady rate, but they are economically deployed (that is, come into actual widespread use) in bursts. Schumpeter suggested deployment might correlate with the upswing in the Kondratiev wave; it’s also a truism that war brings rapid technical development.

To express this, I simply assume significant new inventions go onto a “shopping list” or “technological backlog” of potential technology, and move off the list and into real deployment at a rate that varies between 0 and 100 percent, depending on the Kondratiev cycle value and the values of warfare indicators (see below).

As you can see in figure 2, this gives a fairly credible situation: technology sometimes stagnates as nothing new is deployed for a long time, and at other times skyrockets, especially after a long hiatus. This gave me as much information as I really wanted: eight major surges of technological innovation between now and the beginning of interstellar colonization. (A “major surge” is something on the order of the highly innovative periods 1900-20 or 1940-65.)

To envision the surges, I use a rule of thumb that has no justification other than gut feeling. Each new surge is 90 percent what you might have expected from the last one, plus 10 percent magic (in its Clarke’s Law sense). So from the viewpoint of 1920, 90 percent of the gadgets of the (roughly) Manhattan Project through Apollo Project boom would be imaginable (indeed, some, like TV, were abortively available in the previous boom). But 10 percent (lasers, nuclear power, transistors) would be absolutely incomprehensible—magic.

I further arbitrarily assume that the major discoveries for the next surge have all been made as of today.

The graph shows a major surge in the 2000s and 2010s, Surge Zero, which should deploy everything in SF that seems pretty likely right now. Everything.

Does that feel like a real explosion in the brain, like Bruce Sterling or William Gibson at their dazzling best? All the same it’s only the start.

Surge One must be an immense extension of everything in Surge Zero, plus a 10 percent addition of things that work according to as-yet-undiscovered principles. Surge Two must be extensions on everything in Surge One (including the 10 percent of magic) plus 10 percent new magic. From our viewpoint it’s now 19 percent magic.

And Surge Three … well, you see where this gets to. Since the Inward Turn starts at the end of Surge Seven, 52 percent of significant new technology in the culture we’re imagining must be stuff we currently would not find comprehensible.

Realistically, the world should be half magic. Who’d have thought calculations, the lifeblood of hard SF, could drive us that far into fantasy?

Magic Percentage
% Magic010192734414752576165697275

From HOW TO BUILD A FUTURE by John Barnes (1990)

Evolvable hardware

Evolution is a remarkable designer. After all, it designed us, and every other living thing we know of.

It wasn't long before artificial intelligence researchers tried implementing evolution using computer software. Thus was born the science of the Evolutionary Algorithm. You create a data structure which acts like a gene, start with an enviroment populated with random genes, let them perform for a while, evaluate which were best at doing the task, delete the low performers and replace with new randoms, cross-breed the rest and throw in a few random mutations, and do a fresh cycle. Instant software evolution.

In 1996 Doctor Adrian Thompson had the brainstorm of using such evolutionary algorithms to design hardware. Thus was born the science of Evolvable Hardware. Since an algoritm instead of a human mind is doing the designing, the result tend to be somewhat alien. But effective.

Dr. Thompson's started with a field-programmable gate array (FPGA), which is basically a "programmable" integrated circuit. By sending special commands the user can change how the internal components are connected (actually how they are "virtually" connected, but don't worry about that). The task was to configure the FPGA so it would respond "YES" if you fed it a 1 kHz wave and "NO" if you fed it a 10 kHz wave ("yes" defined as outputting +5 volts and "no" defined as outputting 0 volts).

This was a bit of a challenge for the poor evolvable hardware algorithm. Humans build circuits to do such detection using some kind of electronic clock, but the FPGA has none. It would have to evolve the equivalent of a clock.

Halfway through the evolving, it was approaching a solution, but the output was weird. A FPGA is a digital device so it generally outputs +5v or 0v. But this was was outputting "fuzzy" values. A human engineer knows that a FPGA is a digital on-off device so it designs with that in mind. But the algorithm doesn't know that so it designs pragmatically. It worked with what the FPGA could actually do, not what it was supposed to do.

Finally the algorithm was successful and the FPGA performed as desired.

But when Dr. Thompson looked closer, things got weird again.

Part of the FPGA had been programmed with a circuit which was not connected to the main circuit. Dr. Thompson figured it was superfluous and removed it. And the FPGA promptly lost the ability to tell the two waves apart. When Dr. Thompson added the superfluous circuit back in, the FPGA started working again.

What the heck??

Dr. Thompson eventually figured out the cursed superfluous circuit was influencing the main circuit through electromagnetic coupling. It works, but it is very very alien.

Which is one of the reasons why Dr. Thompson's technique is not used today. For contractual and legal liability reasons chip designers want designs that they understand and can test rigorously. Neither of which is true of the weird designs created by Dr. Thompson's algorithm.

A final problem was when Dr. Thompson loaded the program arrangement from the algorithm into an FPGA of the same type it didn't work! It not only used properties of that type of FPGA, it also used specific quirks of that particular FPGA chip.

In 2003 Jason Lohn et al decided to create an X-band antenna for NASA's Space Technology 5 mission using established antenna evolvable algorithms.

They used two genetic algorithms to create two different antennae, then tested to see which was better. Genetic Algorithm 1 was a standard which created non-branching antennae, that is, the result looks like a twisted piece of wire. Genetic Algorithm 2 was a new one evolving "rod-structured robot morphologies", that is, the result looks like a little tree.

And yes, both look rather alien.


     Legend had it that the Progenitors had called for a perpetual search for knowledge before they departed for parts unknown, aeons ago. But, in practice, most species looked to the Library and only the Library for knowledge. Its store grew only slowly.
     What was the point of researching what must have been discovered a thousand times over by those who came before?
     It was simple, for instance, to choose advanced spaceship designs from Library archives and follow them blindly, understanding only a small fraction of what was built. Earth had a few such ships, and they were marvels.
     The Terragens Council, which handled relations between the races of Earth and the Galactic community, once almost succumbed to that tempting logic. Many humans urged co-opting of Galactic models that older races had themselves co-opted from ancient designs. They cited the example of Japan, which in the nineteenth century had faced a similar problem — how to survive amongst nations immeasurably more powerful than itself. Meiji Japan had concentrated all its energy on learning to imitate its neighbors, and succeeded in becoming just like them, in the end.
     The majority on the Terragens Council, including nearly all of the cetacean members, disagreed. They considered the Library a honey pot — tempting, and possibly nourishing, but also a terrible trap.
     They feared the "Golden Age" syndrome … the temptation to "look backward" — to find wisdom in the oldest, dustiest texts, instead of the latest journal.
     Except for a few races, such as the Kanten and Tymbrimi, the Galactic community as a whole seemed stuck in that kind of a mentality. The Library was their first and last recourse for every problem. The fact that the ancient records almost always contained something useful didn't make that approach any less repugnant to many of the wolflings of Earth, including Tom, Gillian, and their mentor, old Jacob Demwa.
     Coming out of a tradition of bootstrap technology, Earth's leaders were convinced there were things to be gained from innovation, even this late in Galactic history. At least it felt better to believe that. To a wolfling race, pride was an important thing.
     Orphans often have little else.

     But here was evidence of the power of the Golden Age approach. Everything about this ship spoke silkily of refinement. Even in wreckage, it was beautifully simple in its construction, while indulgent and ornate in its embellishments. The eye saw no welds. Bracings and struts were always integral to some other purpose. Here one supported a stasis flange, while apparently also serving as a baffled radiator for excess probability. Orley thought he could detect other overlaps, subtleties that could only have come with aeons of slow improvement on an ancient design.

From STARTIDE RISING by David Brin (1983)

The puppeteer ship was a robot. Beyond the airlock the lifesystem was all one big room. Four crash couches, as varied in design as their intended occupants, faced each other in a circle around a refreshment console.…

There were no corners. The curved wall merged into floor and ceiling; the couches and the refreshment console all looked half melted. In the puppeteer world there would be nothing hard or sharp, nothing that could draw blood or raise a bruise.

From RINGWORLD by Larry Niven (1970)

The hyperdrive shunt ran nearly the length of the ship, beneath the floor. Louis had to recognize the machinery from first principles. It was not of human manufacture; it had the half-melted look of most puppeteer construction. So: the ship had faster-than-light capability. It seemed he was slated for a long trip.

From RINGWORLD ENGINEERS by Larry Niven (1979)

Steam Engine Time

"Steam Engine Time" is a science fictional concept that when the time is ripe for Invention X it will be independently created by isolated individuals all over the world. Apparently the term was coined by Charles Fort.

Wikipedia calls it Multiple Discovery or Simultaneous Invention Hypothesis, as opposed to the more traditional Heroic Theory Of Invention And Scientific Development Hypothesis. Wikipedia also has an impressive list of multiple discoveries. Kevin Kelly calls it Technological Inevitability, the concept that some inventions are meant to be.

In science fiction, a good example is Harry Harrison's "In Our Hands, The Stars" (expanded into The Daleth Effect). SPOILERS: a scientist invents a reactionless drive which will turn a submarine into instant spaceship. The scientist does not want the invention falling into the hands of the military (of any and all nations) because it would be a horrific war weapon. Most of the novel is about the desperate efforts of the scientist to keep it secret and the desperate attempts of all the militaries of the world to seize the secret. Much death and destruction ensue. But the punch line comes when the invention is independently discovered by scientists all over the world. It seems that for the world it has become "Daleth Effect Time".

When the time is ripe for certain things, these things appear in different places in the manner of violets coming to light in early spring.

Farkas Bolyai
Steam Engine Time Urban Dictionary

A period of time when many inventors all over the world, despite isolation from each other, and with no contact with each other in any way, begin inventing a similar technology with a coincidental commonality of ideas.

The invention of the steam engine didn't occur in only one place but was invented independently and in isolation by many inventors all over the world.

Another example of steam engine time includes the independent invention of the aeroplane by people in isolation from each other in many different regions of the world, leading to arguments about "who" invented the aeroplane first.

From Steam Engine Time entry in Urban Dictionary, by Wataru108 (2008)
Charles Fort

For example, he (Charles Fort) was uncomfortable with the notion of “invention” and wondered whether Watt really invented the steam engine or the Wright brothers invented the flying machine. In his book New Lands, Fort wrote: “One of the greatest of secrets that have eventually been found out was for ages blabbed by all the pots and kettles in the world—but that the secret of the steam engine could not reveal itself until came the time for its co-ordination with the other phenomena and the requirements of the Industrial Age.”

William Gibson Interview

There’s an idea in the science-fiction community called steam-engine time, which is what people call it when suddenly twenty or thirty different writers produce stories about the same idea. It’s called steam-engine time—because nobody knows why the steam engine happened when it did. Ptolemy demonstrated the mechanics of the steam engine, and there was nothing technically stopping the Romans from building big steam engines. They had little toy steam engines, and they had enough metalworking skill to build big steam tractors. It just never occurred to them to do it. When I came up with my cyberspace idea, I thought, I bet it’s steam-engine time for this one, because I can’t be the only person noticing these various things. And I wasn’t. I was just the first person who put it together in that particular way, and I had a logo for it, I had my neologism.


The actual phrase was first coined by the collector of weird, Charles Fort, in 1931, who wrote in his early fantasy novel Lo!: “A tree cannot find out, as it were, how to blossom, until comes blossom-time. A social growth cannot find out the use of steam engines, until comes steam-engine-time.”

Steam-engine-time is another name for technological determinism, which is another way to say simultaneous independent invention, Turns out simultaneous parallel discovery and invention are the norm in science and technology rather than the exception (see my previous post).

When it is steam-engine-time, steam engines will occur everywhere. But not before. Because all the precursor and supporting ideas and inventions need to be present. The Romans had the idea of steam engines, but not of strong iron to contain the pressure, nor valves to regulate it, nor the cheap fuel to power it. No idea – even steam engines — are solitary. A new idea rests on a web of related previous ideas. When all the precursor ideas to cyberspace are knitted together, cyberspace erupts everywhere. When it is robot-car-time, robot cars will come. When it is steam-engine-time, you can’t stop steam engines.

From Steam-Engine-Time by Kevin Kelly (2011)
Simultaneous Invention

This phenomenon of simultaneous discovery—what science historians call “multiples”—turns out to be extremely common. One of the first comprehensive lists of multiples was put together by William Ogburn and Dorothy Thomas, in 1922, and they found a hundred and forty-eight major scientific discoveries that fit the multiple pattern. Newton and Leibniz both discovered calculus. Charles Darwin and Alfred Russel Wallace both discovered evolution. Three mathematicians “invented” decimal fractions. Oxygen was discovered by Joseph Priestley, in Wiltshire, in 1774, and by Carl Wilhelm Scheele, in Uppsala, a year earlier. Color photography was invented at the same time by Charles Cros and by Louis Ducos du Hauron, in France. Logarithms were invented by John Napier and Henry Briggs in Britain, and by Joost Bürgi in Switzerland.

“There were four independent discoveries of sunspots, all in 1611; namely, by Galileo in Italy, Scheiner in Germany, Fabricius in Holland and Harriott in England,” Ogburn and Thomas note, and they continue:

The law of the conservation of energy, so significant in science and philosophy, was formulated four times independently in 1847, by Joule, Thomson, Colding and Helmholz. They had been anticipated by Robert Mayer in 1842. There seem to have been at least six different inventors of the thermometer and no less than nine claimants of the invention of the telescope. Typewriting machines were invented simultaneously in England and in America by several individuals in these countries. The steamboat is claimed as the “exclusive” discovery of Fulton, Jouffroy, Rumsey, Stevens and Symmington.

For Ogburn and Thomas, the sheer number of multiples could mean only one thing: scientific discoveries must, in some sense, be inevitable. They must be in the air, products of the intellectual climate of a specific time and place.

From In the Air by Malcolm Gladwell (2008)

The Sword on the Starship

Some space opera writers are fascinated with the romantic concept of star conquerors charging out of their interstellar star ships on horseback, waving long-swords. While cinematically interesting, the concept is obviously scientifically silly, surely somebody advanced enough to run an FTL starship can manage to cobble together a laser pistol (or a submachine gun).

Note this trope is somewhat incompatible with the concept of tech levels, that is, a linear path of technological achievements. To use it you must instead use the concept of a tech tree, one with really long short-cut to starship technology.

A related notion is a high-tech interstellar empire threatened by "barbarians" waiting in their FTL longboat starships at the rim of the empire. Just like a galactic Roman Empire. One wonders about the tech assumptions though. Either starships are relatively cheap (ponder the idea of "barbarians" fielding aircraft carriers as a comparison) or the smallest feudal units are pretty good sized.

There are several related entries on the TV Tropes website: Elegant Weapon for a More Civilized Age, Archaic Weapon for an Advanced Age, Guns Are Worthless, Rock Beats Laser, and Heroes Prefer Swords.

Star Wars movies
Lightsabers are laserized swords but to make oneself immune to blaster bolts you have to Trust The Force, Luke! Only the precognition granted by the Force will allow the Jedi or Sith to get the blade in place fast enough to deflect the bolt. Of course they will be worthless against a .45 automatic. The lightsaber blade will just convert the solid bullet into a molten metal bullet with all of its kinetic energy still intact and still heading right for your face.
Dune novels by Frank Herbert
The Holtzman effect personal force fields will stop bullets safely and will stop laser bolts with the unfortunate side effect of a thermonuclear explosion. Only swords and other blades will penetrate, and only slow moving swords at that. When Herbert adds the Butlerian Jihad it makes the universe of ten thousand years from now look remarkably medieval. Which is a good thing if the author does not want to be forced to write a high-tech cyberpunk post-Singularity novel.
Traveller RPG
Swords are used on planets with high Law Levels because on such worlds it is illegal for civilians to carry firearms. Cutlasses are used when pirates invade starships because guns tend to perforate the hull and let all the air out (in reality you'll have about an hour before the pressure becomes dangerously low). On merchant starships there are racks for cutlasses next to the airlocks so the crew can repel boarders.
Barsoom novels by Edgar Rice Burrough
The Martians have firearms which fire explosive radium bullets. However, there is a nearly unbreakable cultural taboo against fighting a foe with unequal weapons. You can only use weapons of equal or lesser effectiveness. No "Raiders of the Lost Ark" allowed, if your foe pulls out a sword it is not fair to just shoot him.
Deathstalker series by Simon Green
A bolt from a disruper pistol is deadly, but the blasted weapon takes two minutes to recharge. Just like a camera strobe with a weak battery and a large capacitor. People fire their single bolt then unsheathe their sword. There are no slugthrowers firing bullets available because their relatively low price would allow them to be purchased by the "lower classes" of society, and the aristocracy frowns on that.
Sargasso of Lost Starships by Poul Anderson
The aliens have superhuman psychic powers that can deflect blaster bolts or bullets. But they can't stop a sword or a spear because those have too much inertia. Unfortunately for the aliens, the human invader figure this out quite quickly.
The Forever War by Joe Haldeman
The "stasis field" alters the laws of physics so nothing can move faster than 16.3 m/s. Inside a stasis field soldiers are forced to use melee weapons or bow and arrows; lasers, chemical explosives, nuclear warheads, and other high-tech weapons will not work. They also have to wear insulated armor or they are instantly killed by the stasis field bringing the biochemical basis of their body's metabolism to screeching halt.
The Trigger by Arthur Clarke and Michael Kube-McDowell
Scientist accidentally invent a device which will detonate all explosives and gunpowder with a large radius. Criminals learn how to exploit this (e.g., faultless at-range detonator) so the scientists develop the device to the point where exposure will render all explosives and gunpowder in range permanently inert and useless. Criminals start using bow and arrow. The scientists foolishly try to develop the device further, and to their horror realize they've made the ultimate genocide machine.

Forsooth, many have written begiling tales of swordplay laid on Mars, not to mention Venus and assorted extra-solar planets. In fact, I am reading one, Gardner Fox's WARRIOR OF LLARN, right now.

The trouble with most of these stories, including Fox's, is that the authors try to combine two incompatable elements. For one, they want the glamor of antiquity. Therefore they fill their imaginary worlds with impenetrable jungles, fearsome monsters, glittering palaces, haughty emperors, beautiful princesses, sinister temples, villainous priests, cowering slaves, deadly duels, gladitorial combats, ghastly ghosts, frightful demons, lethal magic, gallant steeds, and of course a lavish assortment of swords and other hand-to-hand weapons.

But, at the same time, the writers want to cash in on the fictional appeal of super-science. So, along with this display of picturesque archaism, they mingle elements from the technological present and future: guns, disintegrators and other lethal ray projectors, mechanical air and ground vechicles, and other scientific gadgets. At this point, pop goes the illusion they have striven so hard to build up. For, their fictional milieu is as anachronistic, or technologically incongruous, as it would be to have a contemporary American businessman wear Gothic armor to his office or light his cigarette by rubbing sticks.

True, such incongruities do exist in the real world. Today you can see a Peruvian Indian jogging along on his mule and holding a transistor to his ear. (ed note: for all you young whipper-snappers, this was written in those ancient days of yore when a transistor FM radio was considered cutting-edge high-tech) But a mixture of the technics of different eras is always an unstable and rapidly changing state of affairs, because people compelled to mix with those of a technologically more advanced culture soon adopt the gadgets of the others, as far as they can do so without much disturbing their basic cultural attitudes, social organizations, and traditional way of life. Even when these things are disturbed, the people may eventually adopt the new discoveries when they get used to them.

To judge by the record of our own species, most people are not conservative about adopting more effective methods of killing their foes and getting from place to place. In recent centuries, for instance, primitive people who found themselves fighting Westerners did their damndest to obtain Western weapons. In the wars of the Peruvian Indians against the Conquistadores, many Indian chiefs went into battle wearing armor looted from dead Spaniards. Once the primitives had enough guns, they quickly shelved their bows and spears. The Plains Indians made little use of either in their wars with the whites in the 1870s and 80s... the end of the (19th) century, however, the sword had become an absurd anachronism, even though there were still a few cavalry charges. The last I know of was on 20 March 1942, when Sandeman's cavalry detachment charged a Japanese position near Toungoo, Burma. Needless to say, Sandeman and his gallant Sikhs were all killed before the could get within slashing distance...

...My point is that people who have weapons like radar-sighted, aluminum-alloy, radium rifles of Burroughs' Martians, with ranges of hundreds of miles, would not fool around with swords and spears, as Burroughs' people do, any more than the Plains Indians did when they got rifles. Nor will they go galumphing around on thoats, gawrs, drals, or other beasts of burden when the equivalents of automobiles and airplanes are available. Remember how quickly the Plains Indians adopted the horse...

...So, if you really want to build a convincing fantasy world, ... make up your mind what technological level your world shall have. If it is the ancient, pre-industrial world, that's fine; if the contemporary world, that's fine; if a world of super-science, that's fine. But don't mix them, unless the older technology is shown as crumbling before the new, as it always has, or unless the older activity is preserved in the form of a sport (e.g., hunting, fishing, sailing a sailboat, riding a horse, fighting with swords, shooting a bow, or throwing a javelin)...

From "Range" by Sprague de Camp, Amra v.2 #33 (1965)

Poul Anderson had this comment on de Camp's analysis:

I have no argument with Sprague's interesting essay, but might amplify his remarks a trifle.

First, he modestly omits one legitimate way in which you can put your superscientific hero in a sword-swinging type of sitiuation. That's when, because of shipwreck, secrecy, technological blockade, or whatever, said hero has to get out and mingle with the backwards natives (oops, I mean underdeveloped patriots!) on their own terms à la Krishna.

Poul Anderson

John Brunner is of the opinion that at a bare minimum, a technologically primitive culture can only utilize high-tech items from a more advanced culture if they have some people who are "cobblers." These are tinkerers who can see the functionality of the high-tech components, and reproduce the functionality using native low-tech solutions.

Or things can be easy if the high-tech items are ultra-advanced indestructable self-repairing technology that any moron can use.


Speaking as one who misguidedly thought that writing swords-and-spaceship stories was easy (it used to be, but then I started asking awkward questions of myself), I read both Sprague de Camp's "Range" and Poul Anderson's comment theron with considerable interest. I got to the point where the latter was accusing the former of modesty in omitting the Krishna-type situation as a legitimate means of mating these ingredients, and realized that Poul was doing the same in his turn...

...There are two more ways, not examined in detail in the Amra discussion, in which this paradoxical situation can arise. First, and right under our noses, is the one implied by the horse-doesn't-need-United-Steel argument in respect of modes of transportation. We've had it in scores of After-the-Bomb stories. Modern technology requires an interlocking structure of cohesive and cooperative enterprise in which a catastrophic milieu would vanish and might not appear in its original form...

...One can select out from a body of techniques a certain rather limited group which are within the competence of a single man or a small team — for example the Afghan rifles — and provided one condition is met those techniques can then survive as folk knowledge...

...The condition which must be met is this: among the isolated team or community continuing the technique must be at least one cobbler. I mean by that someone who will make do — who can cut through the fog of traditional methods which surrounds most modern technology and see that even if such-and-such isn't available, so-and-so will do the job. What do those Afghans put in their rifles? Cordite? Maybe — if they have a source of supply from a factory. But for all their handcrafting skill, I don't see them processing nitroglycerine over a cooking fire. More likely, they're packing their cartridges with a rather inefficient black powder.

In your post-nuclear-holocaust situation, to give a parallel instance, you'll be able to keep cars and jeeps moving provided you have somebody around who can bake the gas out of wood, or compress methane boiled off by stable-dung, and plumb a gas-supply into the induction manifold using scrap tubing and insulated tape...

...So: Situation One aforementioned is a catastrophic one, during which for a comparatively brief time a maximal range of incongruities coexist...

...Let's consider Situation Two now; it's far more stable and leads to many more promising consequences. For my investigations into this area, I can thank Poul — hence my comments about his own excess of modesty. He had a delightful scene in a Planet yarn years back, where a sword-swinging spaceman argued that the stars couldn't be light-years apart because he could get from one to the other in a week or two. He'd set up a borderline case of the item under consideration: what one might call an inheritance situation. And the reason why this hasn't been examined more closely in the previous articles in Amra is probably because on Earth it's occurred only rarely and over a small area for a short space of time.

To the quick of the ulcer: a society (community, whatever) busy using up someone else's resources and not its own is a perfect setting in which to combine the most contrasting gadgetry. In the story just referred to, and in heaven knows how many more of that sort, the inheritors are the derelict descendants of a star-spanning galactic empire.


For instance, it takes the resources of a major industrial power to crash a can of instruments on the moon, or to operate an eighty-thousand-ton ocean liner or a fleet of jet aircraft. Unless something incredible happens, and I don't mean a faster-than-light drive, it's going to take the resources of an industrialized planet to maintain a spacefleet. A galactic empire will contain so many planets so highly industrialized and so densely populated that some part of it will survive any major crash and probably make the whole shebang into a galaxy-sized parallel with present-day Earth.

Not good enough. How do we get the local planetary populations down to peasant-agriculture numbers? How do we reduce the odds against knowledge of fifty-percent-plus are of contemporary (star-flying) technology disappearing altogether over an entire chunk of the galaxy?...

...I got it clear in my mind that the ships were surviving because they were built to last, while planet-bound engineering was mainly the product of the inhabitants, isolated on the fringe of the galaxy, and probably a century or two behind the state of the art at the Hub when the empire collapsed (which brings me approximately level with Asimov in his Foundation stories, though he was using the argument to a different end).

And then I got it, belatedly because as I said the Earthside parallels are extremely rare. I can only think of such instances as people mining ancient monuments for building stone and lacking either the patience or the skill to square a true block themselves when the store runs dry.

Suppose the early explorers of the galaxy find caches of starships belonging to a vanished race, in such enormous quantities that they can spread across the stars like seed from a puffball. Good: this provides all the necessary incongruities. You can go as far and as fast as you like; you don't have to take a cross-section of Earthside technology in every ship; and when you get where you're going you start with the local resources only. Maybe you don't make a very good job of it. In that case, when some next-door system gets into an expansionist mood you rather welcome being taken over and garrisoned by legionaries who bring advanced medicine (we should have invited Mrs. Jones who knows first aid!) — and maybe you do well enough yourself to launch out in the conquest game yourself.

But at no point does human knowledge of the borrowed technology catch up with the application of it. This is no surprise though — out of the next hundred people you see drive past you, how many do you think could change a spark plug or grind a valve? In certain previously advanced areas of the galaxy understanding will be achieved; maybe humans get to the theory underlying the stardrive ... but where from there? To build the tools to build the machines to apply the theory, and that may take generations.

(Ed note: This does remind one of Frederik Pohl's Heechee novels.)

From INTERSTELLAR EMPIRE by John Brunner (1965)

This may or may not be the story John Brunner was referring to:

Many men — risking indictment as warlocks or sorcerers—had tried to probe the secrets of the Great Destroyer and compute the speed of these mighty spacecraft of antiquity. Some had even claimed a speed of 100,000 miles per hour for them. But since the starships made the voyage from Earth to the agricultural worlds of Proxima Centauri in slightly less than twenty-eight hours, such calculations would place the nearest star-system an astounding two million eight hundred thousand miles from Earth — a figure that was as absurd to all Navigators as it was inconceivable to laymen.

(Ed note: 2,800,000 miles is a pathetic 1/50th the mean distance between Earth and Mars. To travel from Earth to Proxima Centauri in 28 hours would require the starship to be travelling about 1320 times the speed of light, which is a far far cry from 100,000 mph.)

From "The Rebel of Valkyr" by Alfred Coppel (Planet Stories, Fall, 1950)

Using Inherited Technology

In The Warlock of Rhada by Robert Cham Gilman, one thousand years after the fall of the first galactic empire, warriors are armed with swords and ride horses, but by golly the starships still work. Built to last.

The Warlock of Rhada

The starship Gloria in Coelis, grounded on the sandy plain to the west of Lord Ulm of Vara's keep, was ancient. Though the men who presently flew her were the wisest of their time, they had no really clear notion of how the vessel operated, when it was built or how fast it traveled. From time out of mind, the Order of Navigators had trained its priests in the techniques of automated starflight by rote. Even now, as the Gloria's two million metric tons depressed the soil of the Varan plain, the duty Navigators on the starship's bridge, were chanting the Te Deum Stella, the Litany for Preflight, this ritual being one of the first taught to young novice Navigators on the cloister-planets of Algol.

Though the three junior priests on the bridge were chanting the voice commands that activated the immense ship's systems, in fact only the propulsion units (sealed after manufacture in the time of the Empire) responded. The priests did not know that the vessel's life-support systems and its many amenities had ceased to function more than a thousand years earlier. The interior of the starship was lit by torches burning in wall-sconces, water and food were stored aboard in wooden casks, and the ship's atmosphere was replenished not by the scrubber units, as originally intended, but by the air that was taken aboard through the open ports and hatchways. The starships were capable of almost infinite range, for the engines operated on solar-phoenix units. But the length of any star voyage was limited by the food and water supply and by the fouling of the air by the hundreds of men and horses of the warbands the starships most often carried.

The bridge had been depolarized, and from within this consecrated area where only a Navigator might pass, the duty crew could see the squat towers and thick walls of Lord Vim's keep. The warband, almost a thousand armed men, was mustering on the plain below the north tower, preparing to file into the vaulted caverns within the kilometer-long ship.

Brother Anselm, a novice who spoke with the heavy Slavic accents of the Pleiades Region, had the Conn. This honor was a small one, for the ship was not under way, but the engine cores were still humming from the recent voyage from Aurora, and Anseim, a fervent young man, imagined that the voice of the Holy Star was in them — and speaking directly to him.

He half-closed his eyes and chanted, "Planetary Mass two-third nullified and cores engaged for atmospheric flight at minus thirty and counting."

Brother Gwill, a thinly made and sour young Altairi, made the response, pressing the glowing computer controls in the prescribed sequence. "Cores One and Three at Energy Point Three, for the Glory of Heaven. Cores Two, Four, and Five coming into phase as the Lord of the Great Sky Commands."

"Hallelujah, Core Energy rising on scan curve," Anselm declared with fervid devotion...

..."Null-grav power to main buss at Energy Point Five in the Name of the Holy Name."

"Null-gee to main buss at my hack, if it is pleasing to the Spirit," Gwill responded. In spite of himself he could not suppress a shiver of anticipation. At Energy Point Five, the power of the cores was fed into the lifting system and the vast star ship would begin to lose mass. The tonnage that interacted with planetary gravity to give the ship its great weight when at rest would begin to dissipate into a spatio-temporal anomaly, changing the molecular structure by reversing the atomic polarities of all matter within the Core field. The men who designed and built the starships understood this effect only imperfectly, and the Navigators who now flew them across the Great Sky understood it not at all. But the visual and physical effects of the change in matter within the Core fields was spectacular and awesome. As the Null-grav buss was activated, the skin of the ship would begin to shimmer and glow, surplus energy accumulated by kinesis and radiation from the Vyka Sun expending itself as light and molecular motion until the starship actually began to move. It was a sight that created consternation among the common folk of all the Great Sky, and even Navigators, who were accustomed to the phenomena, gave thought to the miraculous and holy nature of the great ships that were their domain.

Anselm murmured to Brother Collis, "Gloria in Excelsis, let the ship's pressure rise to ambient."

"Ambient it is and blessed be the Holy Star," Collins said rapidly. He pressed the prescribed buttons on the Support Console and waited the required thirty heartbeats. Nothing happened, nor did the young novice expect anything to happen. The display screen remained dark. "We are hold, hold, hold, may it be pleasing to God," he reported in the familiar rising chant. "Hold on pressure, hold on flow, hold on storage."...

...The three priests made the sign of the Star and Anselm in dictated that Brother Gwill should make the Query.

The novice punched in the coded sequence that was one of the first things memorized by all Navigators and meant, in effect, "Are we where we should be?" Ordinarily, for a short atmospheric flight, the Query was omitted from the Litany, but nothing was ever left out when Brother Anseim was in charge of the countdown.

The ship's computer flashed its reply on the display-screen: "Position coordinates D788990658-RA008239657. Province of Vega, Area 10, Aldrin. Planetary coordinates 23° 17' north latitude, 31° 12' west longitude, inertial navigation system engaged."

In spite of their familiarity with the ways of the holy starships, the three novices felt a tingling thrill at the appearance of the strangely shaped sigils in the ancient Anglic runes of the Empire. They had only the vaguest notion of what the ship meant by addressing them in these mystical words, in these phrases of the ancient world. But the background color on the display screen was the Color of Go — emerald green — and that told them that the Gloria in Coelis was, once again, ready for flight.


The Rhadan warlock Cavour (Early Second Empire period) once suggested that starships could attain velocities in excess of 200,000 kilometers per standard hour. Not only did he run the fatal risk of the displeasure of the Order of Navigators by these calculations (in an earlier age he would have been burned), but he earned the derision of his contemporaries. His computations, based on the known elapsed time for flight between the Rimworlds and Earth, resulted in a hypothetical diameter for the galaxy of 12,800,000 kilometers. Even Cavour, a learned man for his day, was shaken by this immense figure, and recanted.

Interregnal investigators, such few as there were, believed that a figure of 666,666 kilometers represented the exact diameter of what they called "The Great Sky."

-Matthias ben Mullerium, The History of the Rhadan Republic, Late Second Stellar Empire period

From The Warlock of Rhada by Robert Cham Gilman (AKA Alfred Coppel) (1985)

Barbarians have FTL but we don't

For an even more unbelievable solution to the "sword on the starship" problem, read Harry Turtledove's "The Road Not Taken". Joshua Munn points out that there is a similar situation in David Brin's "Just a Hint"

The Road Not Taken

"Back then, on Terra, they knew FTL travel was impossible forever. It was a rude shock when they found that a couple of simple experiments could have given them the key to contragrav and the hyperdrive three, four, even five centuries earlier." (ed note: in the 1500's.)

"How did they miss them?" Chang asked.

"No idea — in hindsight they're obvious enough. What's that race that flew bronze ships because they couldn't smelt iron? And every species we know that reached what the old Terrans would have called a seventeenth-century technological level did what was needed — except us."

"But trying to explain contragrav and the hyperdrive skews an unsophisticated, developing physics out of shape. With attention focused on them, too, work on other things, like electricity and atomics, never gets started. And those have much broader applications — the others are only really good for moving things from here to there in a hurry."

With a chuckle, Chang said, "We must have seemed like angry gods when we finally got the hyperdrive and burst off Terra. Radar, radio, computers, fission and fusion — no wonder we spent the next two hundred years conquering."

From "Herbig-Haro" by Harry Turtledove (sequel to "The Road Not Taken")

They don't make 'em like they used to

After the fall of the first galactic empire, after the dark ages, comes the re-birth of the galactic empire. But it will take some time before the reborn empire's tech level reaches that of the old empire.

During that period, any first empire technology that survives will be highly prized, since it is more advanced than current technology.

The Mote In God'S Eye

Blaine was searching for something to say when Whitbread gave him his opportunity. At first Blaine saw only that the junior midshipman was doing something under the edge of the table - but what? Tugging at the tablecloth, testing its tensile strength. And earlier he'd been looking at the crystal. "Yes, Mr. Whitbread," Rod said. "It's very strong."

Whitbread looked up, flushing, but Blaine didn't intend to embarrass the boy. "Tablecloth, silverware, plates, platters, crystal, all have to be fairly durable," he told the company at large. "Mere glassware wouldn't last the first battle. Our crystal is something else. It was cut from the windscreen of a wrecked First Empire reentry vehicle. Or so I was told. It's certain we can't make such materials any longer. The linen isn't really linen, either; it's an artificial fiber, also First Empire.

From THE MOTE IN GOD'S EYE by Larry Niven and Jerry Pournelle

Harvesting Cobbler Technology

A "cobbler" is a local person who can adapt stranger's high technology to the lower tech base of the locals. So local Afghan tribesmen observed stranger Europeans armed with rifles. When the Afghans tried to make their own rifles, the cordite used in the bullets was beyond the capablilities of the Afghan's tech base. So an Afghan cobbler adapted the concept by using easy-to-make gunpowder instead of cordite.

The main reason to harvest cobbler technology is in order to create space barbarians for fun and profit.

A Little Knowledge

(ed note: The aliens of the planet Trillia were visited by Terrans in starships. Unfortunately the Trillians did not have anything the Terrans considered valuable trade goods. The Trillians could not purchase Terran starships, so they slowly researched how to make their own crude ships. They cobbled, in other words. One fine day a Trillian named Witweet is kidnapped at blaster-point by some Terran criminals, who want his aid in stealing a crude Trillian starship. Witweet is puzzled as to why the Terrans would want a cobbled Trillian starship in the first place.)

First it called briefly at a neighboring star, on one of whose planets were intelligent beings that had developed a promising set of civilizations. But, again, quite a few such lay closer to home.

The era of scientific expansion was followed by the era of commercial aggrandizement. Merchant adventurers began to appear in the sector. They ignored Paradox, which had nothing to make a profit on, but investigated the inhabited globe in the nearby system. In the language dominant there at the time, it was called something like Trillia, which thus became its name in League Latin. The speakers of that language were undergoing their equivalent of the First Industrial Revolution, and eager to leap into the modern age.

Unfortunately, they had little to offer that was in demand elsewhere. And even in the spacious terms of the Polesotechnic League, they lived at the far end of a long haul. Their charming arts and crafts made Trillia marginally worth a visit, on those rare occasions when a trader was on such a route that the detour wasn't great. Besides, it was as well to keep an eye on the natives. Lacking the means to buy the important gadgets of Technic society, they had set about developing these for themselves.

"Dog your hatch!" The vocalizer made meaningless noises and Harker realized he had shouted in Anglic. He went back to Lenidellian-equivalent. "I don't propose to waste time. My partners and I did not come here to trade as we announced. We came to get a Trillian spaceship. The project is important enough that we'll kill if we must. Make trouble, and I'll blast you to greasy ash. It won't bother me. And you aren't the only possible pilot we can work through, so don't imagine you can block us by sacrificing yourself. I admit you are our best prospect. Obey, cooperate fully, and you'll live. We'll have no reason to destroy you." He paused. "We may even send you home with a good piece of money. We'll be able to afford that."

The bottling of his fur might have made Witweet impressive to another Trillian. To Harker, he became a ball of fuzz in a kimono, an agitated tail and a sound of coloratura anguish. "But this is insanity . . . if I may say that to a respected guest. . . . One of our awkward, lumbering, fragile, unreliable prototype ships—when you came in a vessel representing centuries of advancement—? Why, why, why, in the name of multiple sacredness, why?"

"I'll tell you later," the man said.

The port was like nothing in Technic civilization, unless on the remotest, least visited of outposts. After all, the Trillians had gone in a bare fifty years from propeller-driven aircraft to interstellar spaceships. Such concentration on research and development had necessarily been at the expense of production and exploitation. What few vessels they had were still mostly experimental. The scientific bases they had established on planets of next-door stars needed no more than three or four freighters for their maintenance.

Thus a couple of buildings and a ground-control tower bounded a stretch of ferrocrete on a high, chilly plateau; and that was Trillia's spaceport. Two ships were in. One was being serviced, half its hull plates removed and furry shapes swarming over the emptiness within. The other, assigned to Witweet, stood on landing jacks at the far end of the field. Shaped like a fat torpedo, decorated in floral designs of pink and baby blue, it was as big as a Dromond-class hauler. Yet its payload was under a thousand tons. The primitive systems for drive, control, and life support took up that much room.

"May I, in turn, humbly request enlightenment as to your reason for . . . sequestering . . . a spacecraft ludicrously inadequate by every standards of your oh, so sophisticated society?"

"We don't actually want the ship as such, except for demonstration purposes," Harker said. "What we want is the plans, the design. Between the vessel itself, and the service manuals aboard, we have that in effect."

Witweet's ears quivered. "Do you mean to publish the data for scientific interest? Surely, to beings whose ancestors went on to better models centuries ago—if, indeed, they ever burdened themselves with something this crude—surely the interest is nil. Unless . . . you think many will pay to see, in order to enjoy mirth at the spectacle of our fumbling efforts?" He spread his arms. "Why, you could have bought complete specifications most cheaply; or, indeed, had you requested of me, I would have been bubbly-happy to obtain a set and make you a gift." On a note of timid hope: "Thus you see, dear boy, drastic action is quite unnecessary. Let us return. I will state you remained aboard by mistake—"

Olafsson guffawed. Dolgorov said, "Not even your authorities can be that sloppy-thinking." Harker ground out his cigarette on the deck, which made the pilot wince, and explained at leisured length:

"We want this ship precisely because it's primitive. Your people weren't in the electronic era when the first human explorers contacted you. They, or some later visitors, brought you texts on physics. Then your bright lads had the theory of such things as gravity control and hyperdrive. But the engineering practice was something else again.

"You didn't have plans for a starship. When you finally got an opportunity to inquire, you found that the idealistic period of Technic civilization was over and you must deal with hardheaded entrepreneurs. And the price was set 'way beyond what your whole planet could hope to save in League currency. That was just the price for diagrams, not to speak of an actual vessel. I don't know if you are personally aware of the fact—it's no secret—but this is League policy. The member companies are bound by an agreement.

"They won't prevent anyone from entering space on his own. But take your case on Trillia. You had learned in a general way about, oh, transistors, for instance. But that did not set you up to manufacture them. An entire industrial complex is needed for that and for the million other necessary items. To design and build one, with the inevitable mistakes en route, would take decades at a minimum, and would involve regimenting your entire species and living in poverty because every bit of capital has to be reinvested. Well, you Trillians were too sensible to pay that price. You'd proceed more gradually. Yet at the same time, your scientists, all your more adventurous types were burning to get out into space.

"I agree your decision about that was intelligent too. You saw you couldn't go directly from your earliest hydrocarbon-fueled engines to a modern starship—to a completely integrated system of thermonuclear powerplant, initiative-grade navigation and engineering computers, full-cycle life support, the whole works, using solid-state circuits, molecular-level and nuclear-level transitions, forcefields instead of moving parts—an organism, more energy than matter. No, you wouldn't be able to build that for generations, probably.

"But you could go ahead and develop huge, clumsy, but workable fission-power units. You could use vacuum tubes, glass rectifiers, kilometers of wire, to generate and regulate the necessary forces. You could store data on tape if not in single molecules, retrieve with a cathode-ray scanner if not with a quantum-field pulse, compute with miniaturized gas-filled units that react in microseconds if not with photon interplays that take a nanosecond.

"You're like islanders who had nothing better than canoes till someone happened by in a nuclear-powered submarine. They couldn't copy that, but they might invent a reciprocating steam engine turning a screw—they might attach an airpipe so it could submerge—and it wouldn't impress the outsiders, but it would cross the ocean too, at its own pace; and it would overawe any neighboring tribes."

He stopped for breath.

"I see," Witweet murmured slowly. His tail switched back and forth. "You can sell our designs to sophonts in a proto-industrial stage of technological development. The idea comes from an excellent brain. But why could you not simply buy the plans for resale elsewhere?"

"The damned busybody League." Dolgorov spat.

"The fact is," Olafsson said, "spacecraft—of advanced type—have been sold to, ah, less advanced peoples in the past. Some of those weren't near industrialization, they were Iron Age barbarians, whose only thought was plundering and conquering. They could do that, given ships which are practically self-piloting, self-maintaining, self-everything. It's cost a good many lives and heavy material losses on border planets. But at least none of the barbarians have been able to duplicate the craft thus far. Hunt every pirate and warlord down, and that ends the problem. Or so the League hopes. It's banned any more such trades."

He cleared his throat. "I don't refer to races like the Trillians, who're obviously capable of reaching the stars by themselves and unlikely to be a menace when they do," he said. "You're free to buy anything you can pay for. The price of certain things is set astronomical mainly to keep you from beginning overnight to compete with the old-established outfits. They prefer a gradual phasing-in of newcomers, so they can adjust.

"But aggressive, warlike cultures, that'd not be interested in reaching a peaceful accommodation—they're something else again. There's a total prohibition on supplying their sort with anything that might lead to them getting off their planets in less than centuries. If League agents catch you at it, they don't fool around with rehabilitation like a regular government. They shoot you."

Harker grimaced. "I saw once on a telescreen interview," he remarked, "Old Nick van Rijn said he wouldn't shoot that kind of offenders. He'd hang them. A rope is reusable."

"And this ship can be copied," Witweet breathed. "A low industrial technology, lower than ours, could tool up to produce a modified design, in a comparatively short time, if guided by a few engineers from the core civilization."

"I trained as an engineer," Harker said. "Likewise Leo; and Einar spent several years on a planet where one royal family has grandiose ambitions."

"But the horror you would unleash!" wailed the Trillian. He stared into their stoniness. "You would never dare go home," he said.

"Don't want to anyway," Harker answered. "Power, wealth, yes, and everything those will buy—we'll have more than we can use up in our lifetimes, at the court of the Militants. Fun, too." He smiled. "A challenge, you know, to build a space navy from zero. I expect to enjoy my work."

"Will not the, the, the Polesotechnic League . . . take measures?"

"That's why we must operate as we have done. They'd learn about a sale of plans, and then they wouldn't stop till they'd found and suppressed our project. But a non-Technic ship that never reported in won't interest them. Our destination is well outside their sphere of normal operations. They needn't discover any hint of what's going on—till an interstellar empire too big for them to break is there. Meanwhile, as we gain resources, we'll have been modernizing our industry and fleet."

"It's all arranged," Olafsson said. "The day we show up in the land of the Militants, bringing the ship we described to them, we'll become princes."

"Kings, later," Dolgorov added. "Behave accordingly, you xeno. We don't need you much. I'd soon as not boot you through an airlock."

Witweet spent minutes just shuddering.

From A Little Knowledge by Poul Anderson (1971). Collected in David Falkyn: Star Trader

Technology and Society

Funny thing about society in general and people in specific. Back in the 1750's this new thing called "Science" really started coming into its own. It was amazing the things it could discover, and so many of them with marvelously practical uses! It seemed like there was nothing science could not do. Science was going to bring us to a grand and glorious utopian future. Even now there is some nostaligia for this view, the technical term is "Retro-Futurism".

This all turned to worms in the early 1900's. Suddenly science revealed its dark side. Science unleashed unspeakable horrors, there were things man was not meant to know, and one started to see more and more dystopias in science fiction literature.

Science didn't change, it can't. The change was in the attitude of society.

So what happened? Yes, I know most of you suddenly shouted "The invention of the atom bomb, you moron!". BZZZT! You're wrong, thank you for playing. It was already in full swing long before 1945. So what's the answer?

I believe that master science fiction author and science explainer Isaac Asimov has the answer. He wrote about it in a 1969 essay entitled The Sin of the Scientist (collected in The Stars In Their Courses). He was speculating on what a "scientific sin" would be. Turns out it would be an act that would blacken the very name of science itself.


For a long period after 1752, throughout the nineteenth century indeed, science was generally considered the hope of humanity. Oh, there were people who thought this particular scientific advance or that was wicked, and who objected to anesthetics, for instance, or to the theory of evolution, or, for that matter, to the Industrial Revolution—but science in the abstract remained good.

How different it is today! There is a strong and growing element among the population which not only finds scientists suspect, but is finding evil in science in the abstract.

It is the whole concept of science which (to many) seems to have made the world a horror. The advance of medicine has given us a dangerous population growth; the advance of technology has given us a growing pollution danger; a group of ivory-tower, head-in-the-clouds physicists have given us the nuclear bomb; and so on and so on and so on.

But at exactly which point in time did the disillusionment with the "goodness" of science come? When did it start?

Could it have come at the time when some scientist or scientists demonstrated the evil in science beyond any doubt; showed mankind a vision of evil so intense that not only the scientist himself but all of science was darkened past the point where it could be washed clean again?

When was the sin of the scientist committed, then, and who was the scientist?

The easy answer is the nuclear bomb. It was to that which Oppenheimer referred in his remark on sin.

But I say no. The nuclear bomb is a terrible thing that has contributed immeasurably to the insecurity of mankind and to his growing distrust of science, but the nuclear bomb is by no means pure evil.

To develop the nuclear bomb, physicists had to extend, vastly, their knowledge of nuclear physics generally. That has led to cheap radioisotopes that have contributed to research in science and industry in a hundred fruitful directions; to nuclear power stations that may be of tremendous use to mankind, and so on. Even the bombs themselves can be used for useful and constructive purposes (as motive power for spaceships, for one thing). And missiles, which might have hydrogen bombs attached, might have spaceships attached instead.

Besides, even if you argue that the development of the nuclear bomb was sin, I still reply that it wasn't the first sin. The mistrust of science itself antedates the nuclear bomb. That bomb intensified the mistrust but did not originate it.

I find a certain significance in the fact that the play R.U.R. by Karel Capek was first produced in 1921.

It brought the Frankenstein motif up to date. The original Frankenstein, published a century earlier, in 1818, was the last thrust of theological, rather than scientific, sin. In its Faustian plot, a scientist probed forbidden knowledge and offended God rather than man. The monster who in the end killed Frankenstein could easily be understood as the instrument of God's vengeance.

In R.U.R., however, the theological has vanished. Robots are created out of purely scientific motivation with no aura of "forbiddenness." They are tools intended to advance man's good the way the railroad and telegraph did; but they got out of hand and in the end the human race was destroyed.

Science could get out of hand!

The play was an international success (and gave the word "robot" to the world and to science fiction) so its thesis of science out of hand must have touched a responsive chord in mankind.

Why should men be so ready, in 1921, to think that science could get out of hand and do total evil to the human race, when only a few years before, science was still the "Mr. Clean" who would produce a Utopia if allowed to work?

What happened shortly before 1921? World War I happened shortly before 1921.

World War II was a greater and deadlier war than World War I; but World War I was incomparably more stupid in its details.

Men have made colossal misjudgments in a moment of error and may make more to come. Some day, someone will push the wrong button, perhaps, in a moment of panic or lack of understanding, and destroy the world; but never has constant, steady stupidity held sway for weeks, months and years as among the military leaders of World War I. For persistent stupidity, they will never be approached.

A million men and more died at Verdun. Sixty thousand British soldiers died in a single day on the Somme while generals thought they could build a bridge of mangled flesh across the trenches.

Everything about the carnage was horrible, but was there anything which managed to make itself felt above that sickening spectacle of mutual suicide? Was it the new explosives used in unprecedented quantities; the machine guns, the tanks? They were only minor developments of old devices. Was it the airplane, first used in battle, in this war? Not at all! The airplane was actually admired, for it was in itself beautiful, and it clearly had enormous peacetime potential.

No, no! If you want the supreme horror of the war, here it is:

On April 22, 1915, at Ypres, two greenish-yellow clouds of gas rolled toward the Allied line at a point held by Canadian divisions.

It was poison gas; chlorine. When the clouds covered the Allied line, that line caved in. The soldiers fled; they had to; and a five-mile opening appeared.

No gap like that had been seen anywhere before on the Western Front, but the Germans muffed their opportunity. For one thing, they hadn't really believed it would work (even though they had earlier experimented with gas in a smaller way against the Russians), and were caught flat-footed. For another, they hesitated to advance until the cloud had quite dissipated.

The Canadians were able to rally, and after the clouds drifted away, their line re-formed. By the time of the next gas attack, all were prepared and the gas mask was in use.

That was the horror of World War I, for before the war was over poison gases far more horrible than the relatively innocuous chlorine were put into use by both sides.

So grisly was the threat of poison gas, so insidious its onset, so helpless an unprepared group of victims and, what's more, so devastatingly atrocious did it seem to make war upon breathing—that common, constant need of all men —that after World War I gas warfare was outlawed.

In all of World War II, poison gas was not used no matter what the provocation, and in wars since, even the use of tear gas arouses violent opposition. Military men argue endlessly that poison gas is really humane; that it frequently incapacitates without killing or permanent harm; that it does not maim horribly the way shells and bullets do. People nevertheless will not brook interference with breathing. Shells and bullets might miss; one might hide from them. But how escape or avoid the creeping approach of gas?

And what, after all, is the other side of poison gas? It has only one use; to harm, incapacitate and kill. It has no other use. When World War I was over and the Allies found themselves left with many tons of poison gas, to what peaceful use could those tons be converted? To none. The poison gas had to be buried at sea or disposed of clumsily in some other fashion. Was even theoretical knowledge gained? No!

Poison gas warfare was developed knowingly by a scientist with only destruction in mind. The only excuse for it was patriotism, and is that enough of an excuse?

There is a story that during the Crimean War of 1853-56, the British government asked Michael Faraday, the greatest living scientist of the day, two questions: 1) Was it possible to develop poison gas in quantities sufficient to use on the battlefield? And 2) would Faraday head a project to accomplish the task?

Faraday said "Yes" to the first and an emphatic "No" to the second. He did not consider patriotism excuse enough. During World War I, Ernest Rutherford of Great Britain refused to involve himself in war work, maintaining that his research was more important.

In the name of German patriotism, however, poison gas warfare was introduced in World War I, and it was the product of science. No one could miss that. Poison gas was invented by the clever chemists of the German Empire. And the gas poisoned not only thousands of men, but the very name of science. For the first time, millions became aware that science could be perverted to monstrous evil, and science has never been the same again.

Poison gas was the sin of the scientist.

And can we name the sinner?

Yes, we can. He was Fritz Haber, an earnest German patriot of the most narrow type, who considered nothing bad if it brought good (according to his lights) to the Fatherland. (Alas, this way of thinking is held by too many people of all nations and is not confined to Germany.)

Haber had developed the "Haber process" which produced ammonia out of the nitrogen of the air. The ammonia could be used to manufacture explosives. Without that process, Germany would have run out of ammunition by 1916, thanks to the British blockade. With that process, she ran out of food, men and morale, but never out of ammunition. This, however, will scarcely qualify as a scientific sin, since the Haber process can be used to prepare useful explosives and fertilizers.

During the war, however, Haber labored unceasingly to develop methods of producing poison gas in quantity and supervised that first chlorine attack.

His reward for his unspotted devotion to his nation was a most ironic one. In 1933, Hitler came to power and, as it happened, Haber was Jewish. He had to leave the country and died in sad exile within the year.

That he got out of Germany safely was in part due to the labors of Rutherford, who moved mountains to rescue as many German scientists as he could from the heavy hand of the Nazi psychopaths. Rutherford personally greeted those who reached England, shaking hands with them in the fraternal comradeship of science.

He would not, however, shake hands with Haber. That would, in his view, have been going too far, for Haber, by his work on poison gas, had put himself beyond Rutherford's pale.

I can only hope that Rutherford was not reacting out of offended national patriotism, but out of the horror of a scientist who recognized scientific sin when he saw it.

Even today, we can still recognize the difference. The men who developed the nuclear bombs and missile technology are not in disgrace. Some of them have suffered agonies of conscience but they know, and we all know, that their work can be turned to great good, if only all of us display wisdom enough. Even Edward Teller, in so far as his work may result in useful fusion power some day, may be forgiven by some his fatherhood of the H-bomb.

But what about the anonymous, hidden people, who in various nations work on nerve gas and on disease germs? To whom are they heroes?

To what constructive use can nerve gas in ton-lot quantities be put? To what constructive use can plague bacilli in endless rows of flasks be put?

The sin of the scientist is multiplied endlessly in these people and for their sake—to make matters theological once again—all mankind may yet be cursed.

From THE SIN OF THE SCIENTIST by Isaac Asimov (1969)

By the standards of all earlier ages, it was Utopia. Ignorance, disease, poverty and fear had virtually ceased to exist. The memory of war was fading into the past as a nightmare vanishes with the dawn; soon it would lie outside the experience of all living men.

With the energies of mankind directed into constructive channels, the face of the world had been remade. It was, almost literally, a new world. The cities that had been good enough for earlier generations had been rebuilt-or deserted and left as museum specimens when they had ceased to serve any useful purpose. Many cities had already been abandoned in this manner, for the whole pattern of industry and commerce had changed completely. Production had become largely automatic; the robot factories poured forth consumer goods in such unending streams that all the ordinary necessities of life were virtually free. Men worked for the sake of the luxuries they desired; or they did not work at all.

It was One World. The old names of the old countries were still used, but they were no more than convenient postal divisions. There was no one on earth who could not speak English, who could not read, who was not within range of a television set, who could not visit the other side of the planet within twenty-four hours..

Crime had practically vanished. It had become both unnecessary and impossible. When no one lacks anything, there is no point in stealing. Moreover, all potential criminals knew that there could be no escape from the surveillance of the Overlords. In the early days of their rule, they had intervened so effectively on behalf of law and order that the lesson had never been forgotten.

Crimes of passion, though not quite extinct, were almost unheard of. Now that so many of its psychological problems had been removed, humanity was far saner and less irrational. And what earlier ages would have called vice was now no more than eccentricity—or, at the worst, bad manners.

One of the most noticeable changes had been a slowing-down of the mad tempo that had so characterized the twentieth century. Life was more leisurely than it had been for generations. It therefore had less zest for the few, but more tranquillity for the many. Western man had relearned—what the rest of the world had never forgotten—that there was nothing sinful in leisure as long as it did not degenerate into mere sloth.

Whatever problems the future might bring, time did not yet hang heavy on humanity's hands. Education was now much more thorough and much more protracted. Few people left college before twenty—and that was merely the first stage, since they normally returned again at twenty-five for at least three more years, after travel and experience had broadened their minds. Even then, they would probably take refresher courses at intervals for the remainder of their lives in the subjects that particularly interested them.

This extension of human apprenticeship so far past the beginning of physical maturity had given rise to many social changes. Some of these had been necessary for generations, but earlier periods had refused to face the challenge—or had pretended that it did not exist. In particular, the pattern of sexual mores—insofar as there had ever been a single pattern—had altered radically. It had been virtually shattered by two inventions, which were, ironically enough, of purely human origin and owed nothing to the Overlords.

The first was a completely reliable oral contraceptive; the second was an equally infallible method—as certain as fingerprinting, and based on a very detailed analysis of the blood—of identifying the father of any child. The effect of these two inventions upon human society could only be described as devastating, and they had swept away the last remnants of the Puritan aberration.

(ed note: the above was written in 1953. A reasonably reliable oral contraceptive became available in 1960, and highly accurate DNA paternity tests became available in the 1980s. Sadly for Clarke's future history, as of 2016 in the US the Puritans are still with us.)

Another great change was the extreme mobility of the new society. Thanks to the perfection of air transport, everyone was free to go anywhere at a moment's notice. There was more room in the skies than there had ever been on the roads, and the, twenty-first century had repeated, on a larger scale, the great American achievement of putting a nation on wheels.

It had given wings to the world.

Though not literally. The ordinary private flyer or aircar had no wings at all, or indeed any visible control surfaces.

Even the clumsy rotor blades of the old helicopters had been banished. Yet man had not discovered anti-gravity; only the Overlords possessed that ultimate secret. His aircars were propelled by forces which the Wright brothers would have understood. Jet reaction, used both directly and in the more subtle form of boundary layer control, drove his flyers forward and held them in the air. As no laws or edicts of the Overlords could have done, the ubiquitous little aircars had washed away the last barriers between the different tribes of mankind.

From CHILDHOOD'S END by Arthur C. Clarke (1953)

(ed note: this is from a satirical fantasy novel, but still demonstrates how technology changes society. The same concept can be adapted to science fiction.

The race of dwarfs do lots of mining. This means dealing with the dangerously explosive gas called firedamp. A profession arose to deal with firedamp, called "knockermen". And knockermen became leaders. Until...)

     'Thank you for that, corporal. Tell me . . . those robes some of the dwarfs were wearing. I know they wear them on the surface so they're not polluted by the nasty sunlight, but why wear them down there?'
     'It's traditional, sir. Er, they were worn by the . . . well, it's what you'd call the knockermen, sir.'
     'What did they do?'
     'Well, you know about firedamp? It's a gas you get in mines sometimes. It explodes.'
     Vimes saw the images in his mind as Cheery explained . . .

     The miners would clear the area, if they were lucky. And the knockerman would go in wearing layer after layer of chain-mail and leather, carrying his sack of wicker globes stuffed with rags and oil. And his long pole. And his slingshot.
     Down in the mines, all alone, he'd hear the knockers. Agi Hammerthief and all the other things that made noises, deep under the earth.
     There could be no light, because light would mean sudden, roaring death. The knockerman would feel his way through the utter dark, far below the surface.
     There was a type of cricket that lived in the mines. It chirruped loudly in the presence of firedamp. The knockerman would have one in a box, tied to his hat.
     When it sang, a knockerman who was either very confident or extremely suicidal would step back, light the torch on the end of his pole and thrust it ahead of him. The more careful knockerman would step back rather more, and slingshot a ball of burning rags into the unseen death. Either way, he'd trust in his thick leather clothes to protect him from the worst of the blast.
     It was an honorable trade but, at least to start with, it didn't run in families. They didn't have families. Who'd marry a knockerman? They were dead dwarfs walking. But sometimes a young dwarf would ask to become one; his family would be proud, wave him goodbye, and then speak of him as if he was dead, because that made it easier.
     Sometimes, though, knockermen came back. And the ones that survived went on to survive again, because surviving is a matter of practice. And sometimes they would talk a little of what they heard, all alone in the deep mines ... the tap-tapping of dead dwarfs trying to get back into the world, the distant laughter of Agi Hammerthief, the heartbeat of the turtle that carried the world.
     Knockermen became kings.

     Vimes, listening with his mouth open, wondered why the hell it was that dwarfs believed that they had no religion and no priests. Being a dwarf was a religion. People went into the dark for the good of the clan, and heard things, and were changed, and came back to tell...

     And then, fifty years ago, a dwarf tinkering in Ankh-Morpork had found that if you put a simple fine mesh over your lantern flame it'd burn blue in the presence of the gas but wouldn't explode. It was a discovery of immense value to the good of dwarfkind and, as so often happens with such discoveries, almost immediately led to a war.
     'And afterwards there were two kinds of dwarf,' said Cheery sadly. 'There's the Copperheads, who all use the lamp and the patent gas exploder, and the Schmaltzbergers, who stick to the old ways. Of course we're all dwarfs,' she said, 'but relations are rather . . . strained.'
     'I bet they are.'
     'Oh, no, all dwarfs recognize the need for the Low King, it's just that . . .'
     ' . . they don't quite see why knockermen are still so powerful?'
     'It's all very sad,' said Cheery.

From THE FIFTH ELEPHANT by Terry Pratchett (1999)

#1. Eli Whitney Accidentally Causes The Civil War

The American South, the 1790s. The plantation slavery model was in trouble. The old crops of rice, tobacco, and indigo weren't profitable any more. Neither was cotton, due to the labor-intensive process of jerking the seeds out. It took days of combing bush to remove all the sticky seed and get everyone to stop laughing at all the euphemisms.

Cue Eli Whitney and his cotton gin. A relatively quick and easy spur-of-the-moment invention, the gin was capable of whipping out 55 pounds of cotton in a single day. In comparison, teasing out the seeds by hand might get you a whole pound for a day's work. Hooray! The plantations were saved!

Yeah, about that ...

Before the cotton gin came around, slavery had been on the way out. Slaves were expensive to maintain, and poor production was making it exceedingly pointless to keep them. Thanks to the gin, cotton became super profitable, and the cotton economy exploded. There was one catch: While the gin super effectively processed cotton by separating it from its seeds, it did precisely jack s**t to pick it. So by making processing profitable and much more efficient, it massively raised the need for pickers. That is, slaves.

So the number of slaves in the South quintupled between 1800 and 1850, and by 1860, the region was an agricultural powerhouse, its wealth based on King Cotton and slave labor. As for Eli Whitney, he was a scholar and an inventor who never owned slaves himself, so the whole "slavery explosion" part of the equation possibly hadn't even occurred to him. And even if that didn't come as a shock to him, what happened afterwards most certainly did.

When abolitionists up North began to suggest that maybe the South shouldn't be making bank on the bloody backs of human beings, it threatened the livelihoods of every rich man down there. Said rich men weren't taking that from a bunch of Yankees, so next came talk of secession, and you know what happened next. 600,000 Americans died in the Civil War, all tracing back to Eli's humble cotton engine. Which, by the way, he never made much money from, because his device was easily copied and patent law sucked.

Luckily for him, Eli had gained a solid reputation as an innovator, and was eventually consoled with a massive government order. Of guns.

Future Shock

One of the many ways of classifying personally types in twain is into "Neophiles" and "Neophobes." The former love and enjoy changes and new things, the latter instead hate and feel threatened by the same. Neophobes are hostile to series of changes, with responses ranging from "Stop The World, I Want To Get Off" to full blown Reactionary feelings.

And when the changes start coming faster and faster (i.e, the rate of change increases), Neophobes become more and more frantic. Which makes the current world situation a pretty dire place for Neophobes, since accelerated change is exactly what is happening. At some point a given Neophobe is going to snap.

This threatens advancement along a tech tree since technological advancement is by definition a series of changes. Such technological changes always have a social impact. Just ask anybody who used to have a job on an automobile assembly line. Or people forced to be caregivers for their elderly parents who were granted longer lifespans by advancements in medical technology.

A milder but more tech-hostile form of this comes from powerful people whose basis of power is threatened with technological disruption. If you are an ultra-rich oil baron for whom petroleum is the basis of all your wealth and power, you are going to fight the solar power industry like you were a cornered wolverine. Just try to find a CEOs of telephone-directories, newspaper, encyclopedia, and magazine publishers who has anything nice to say about the advent of the internet. All of those publishers are rapidly going bankrupt.

Not to mention the MPAA and the RIAA who have been doing their darndest to stuff the Genie back into the bottle by outlawing the internet.

Such powerful people want the status quo ante, thank you very much. Not for deep-seated psychological reasons, it is just about the money.

On the other hand there are powerful people wannnabes who hope to seize power by exploiting a new disruptive technology. They are more or less at war with the status quo group. Examples include Steve Jobs, Bill Gates, and Elon Musk.

Science fiction writers sometimes use this as a plot idea. Indeed, the oil industry's fight against solar power was predicted in Robert Heinlein's short story "Let There Be Light." On a cynical note, Heinlein made a time-line to place all his stories and characters on. In the story the two protagonists Douglas and Martin prevail over the Power Syndicate. On the time-line I noticed that Douglas and Martin died on the same day. I suspect that they were assasinated in revenge by the Power Syndicate.

The concept (and the very term itself) of Future Shock was popularized by Alvin Toffler in his 1970 book. As of this writing (2016) Toffler's book has been shown to be quite accurate by current events. There is a worryingly large segement of the population that is so oppressed by Future Shock that they apparently have undergone a psychological break, and now refuse to accept facts from science and indeed from reality in general.

Characteristically science fiction authors have some future shock aversion themselves, because it makes writing science fiction so much more difficult. There are many literary methods.


Future Shock is a book written by the futurist Alvin Toffler in 1970. In the book, Toffler defines the term "future shock" as a certain psychological state of individuals and entire societies. His shortest definition for the term is a personal perception of "too much change in too short a period of time". The book, which became an international bestseller, grew out of an article "The Future as a Way of Life" in Horizon magazine, Summer 1965 issue. The book has sold over 6 million copies and has been widely translated.


Toffler argued that society is undergoing an enormous structural change, a revolution from an industrial society to a "super-industrial society". This change overwhelms people. He believed the accelerated rate of technological and social change left people disconnected and suffering from "shattering stress and disorientation"—future shocked. Toffler stated that the majority of social problems are symptoms of future shock. In his discussion of the components of such shock, he popularized the term "information overload."

Development of society and production

Alvin Toffler distinguished three stages in development of society and production: agrarian, industrial and post-industrial.

The first stage began in the period of the Neolithic Era when people invented agriculture, thereby passing from barbarity to a civilization. The second stage began in England with the Industrial Revolution during which people invented the machine tool and the steam engine. The third stage began in the second half of the 20th century in the West when people invented automatic production, robotics and the computer. The services sector attained great value.

Toffler proposed one criterion for distinguishing between industrial society and post-industrial society: the share of the population occupied in agriculture versus the share of city labor occupied in the services sector. In a post-industrial society, the share of the people occupied in agriculture does not exceed 15%, and the share of city laborers occupied in the services sector exceeds 50%. Thus, the share of the people occupied with brainwork greatly exceeds the share of the people occupied with physical work in post-industrial society.

Fear of the future

Alvin Toffler's main thought consists of the fact that modern man feels shock from rapid changes. For example, Toffler's daughter went to shop in New York City and she couldn't find a shop in its previous location. Thus New York has become a city without a history. The urban population doubles every 11 years. The overall production of goods and services doubles each 50 years in developed countries. Society experiences an increasing number of changes with an increasing rapidity, while people are losing the familiarity that old institutions (religion, family, national identity, profession) once provided. The so-called "brain drain" – the emigration of European scientists to the United States – is both an indicator of the changes in society and also one of their causes.

From the Wikipedia entry for FUTURE SHOCK

Rather, I'd just like to note that the past decade or so seems to have been marked by a worldwide upwelling of bigotry and intolerance

This stuff is pervasive; you can come up with alarming news of authoritarian excesses in every corner of the globe.

What's going on?

Reading Robert Altermeyer's The Authoritarians gives one or two pointers, but the narrow focus — on authoritarian followers in politics — begs the question of where all this authoritarianism is coming from.

The term Future Shock was coined by Alvin and Heidi Toffler in the 1960s to describe a syndrome brought about by the experience of "too much change in too short a period of time". Per Wikipedia (my copy of Future Shock is buried in a heap of books in the room next door) "Toffler argues that society is undergoing an enormous structural change, a revolution from an industrial society to a 'super-industrial society'. This change will overwhelm people, the accelerated rate of technological and social change leaving them disconnected and suffering from 'shattering stress and disorientation' — future shocked. Toffler stated that the majority of social problems were symptoms of the future shock. In his discussion of the components of such shock, he also popularized the term information overload."

It's about forty years since "Future Shock" was published, and it seems to have withstood the test of time. More to the point, the Tofflers' predictions for how the symptoms would be manifest appear to be roughly on target. They predicted a growth of cults and religious fundamentalism; rejection of modernism: irrational authoritarianism: and widespread insecurity. They didn't nail the other great source of insecurity today, the hollowing-out of state infrastructure and externally imposed asset-stripping in the name of economic orthodoxy that Naomi Klein highlighted in The Shock Doctrine, but to the extent that Friedmanite disaster capitalism can be seen as a predatory corporate response to massive political and economic change, I'm inclined to put disaster capitalism down as being another facet of the same problem. (And it looks as if the UK and USA are finally on the receiving end of disaster capitalism at home, in the post-2008 banking crisis era.)

My working hypothesis to explain the 21st century is that the Tofflers underestimated how pervasive future shock would be. I think somewhere in the range from 15-30% of our fellow hairless primates are currently in the grip of future shock, to some degree. Symptoms include despair, anxiety, depression, disorientation, paranoia, and a desperate search for certainty in lives that are experiencing unpleasant and uninvited change. It's no surprise that anyone who can offer dogmatic absolute answers is popular, or that the paranoid style is again ascendant in American politics, or that religious certainty is more attractive to many than the nuanced complexities of scientific debate. Climate change is an exceptionally potent trigger for future shock insofar as it promises an unpleasant and unpredictable dose of upcoming instability in the years ahead; denial is an emotionally satisfying response to the threat, if not a sustainable one in the longer term.

Deep craziness: we're in it, and there's probably not going to be any reduction in the prevalence of authoritarian escapism until we collectively become accustomed to the pace of change. Which will, at a minimum, not happen until the older generations have died of old age — and maybe not even then.

From A WORKING HYPOTHESIS by Charles Stross (2010)

(ed note: During the fall of the Galactic Empire the Vegan Scout Starfire was sent on a bogus mission into unexplored space, basically to die in the wilderness. The ship gradually falls apart due to lack of spares and proper engineers. Finally it crashes on an unknown planet, the ship a total wreck. But Captain Vibor snaps and calmly orders the crew to fix the unfixable ship.)

     “Let’s have it,” he said and sat down on a bedroll. He was aware that the tension which had held them all for a second or two was relaxing. And he knew that the rangers would follow his lead—they would wait for his decision.
     “(Captain) Vibor is no longer with us—he’s—he’s cracked.” Smitt fumbled for words. And Kartr read in him a rising fear and desolation.
     “Is it because of his loss of sight? If that is so, the condition may be only temporary. When he becomes resigned to that—”
     “No. He has been heading for a breakdown for a long time. The responsibility of command under present conditions—that fight with the Greenies—he was good friends with Tork, remember? The ship falling to pieces bit by bit and no chance for repairs— It’s added up to drive him under. Now he’s just refusing to accept a present he doesn’t dare believe in. He’s retired into a world of his own where things go right instead of wrong. And he wants us in there with him.
     …But Kartr could at this moment understand the odd incidents of the past months, certain inconsistencies in Vibor’s orders—one or two remarks he had overheard.
     “You think that there is no chance of his recovering?”
     “No. The crash pushed him over the edge. The orders he’s given during the past hour or so—I tell you—he’s finished!”

(ed note: This is the fate of those suffering from acute Future Shock)

From STAR RANGERS by Andre Norton, 1953.
Collected in STAR SOLDIERS (2001), currently a free eBook in the Baen free library.

The first person to introduce the concept of Future Shock was Alvin Toffler in his 1970 book, Future Shock. The main argument is that society is undergoing an enormous structural change, a revolution from an industrial society to a “super-industrial society”. This change will overwhelm people, the accelerated rate of technological and social change will leave them disconnected, suffering from “shattering stress and disorientation” – future shocked. Toffler stated that the majority of social problems were symptoms of future shock.

A few years earlier, Gordon Moore in his now famous paper introduced the idea that would eventually be called Moore’s Law, that states that the speed and density of microprocessor design will follow an exponential curve. This was at a time when computers had barely had any impact on society, nearly 20 years before PC’s made hardly a dent on the economic landscape. 30 years later we saw the explosion of the Internet into the world. Now 40 years later, microprocessors speed is doubling almost every year, and its effects are extraordinary. Not a day goes buy now when some scientific or technological advance isn’t hitting the front pages. As Ray Kurzweil suggest with his Law of Accelerating Returns, microprocessor are such an integrated part of our lives of economic progress, that now society too is caught up in this accelerating change, suggesting that we could see as much change in the next 25 years, as we saw in the last 10,000 years combined!

As one of the leading thinkers on the singularity, Eliezer Yudkowsky is someone accustomed to thinking about extremes of future technological change and advancement. After having many wide ranging discussions with futurists of all stripes, he noticed that certain technological implications can be too “far out” or shocking to some groups more than others. So he came up with what he calls Future Shock Levels or the level that different people find themselves in terms of their concept of the future, and what they are willing to consider, or which is too futuristic or even shocking for them.

Shock Level 0

Degree of Change: Flat.

Technologies: Same as today, maybe more TV channels, bigger cars or TV’s.

The legendary average person is comfortable with modern technology – not so much the frontiers of modern technology, but the technology used in everyday life. Most people, TV anchors, journalists, politicians.

For people at this level, the future is seen as pretty much the same as it is today. If you could chart their concept of the future on a graph, you would see change reaching a plateau today and leveling off from here on out. Almost every economic and political paper about the future I’ve read falls into this category. When they discuss wide ranging implications of their policy decisions, there is hardly any mention of technological change at all, and only in the most mundane ways with concepts of Level 1 being described as something to be afraid of, with dangerous out-of-control implications. The current climate of fear over cloning and stem-cell therapy falls into this level.

Shock Level 1

Degree of Change: Logarithmic, then hitting a relative plateau in a decade or two.

Technologies: Virtual reality, living to a hundred, e-commerce, hydrogen economy, ubiquitous computing, stem-cell cloning, minor genetic improvements.

At this level you will find the majority of futurists and future oriented publications. Modern technological frontiers as depicted in WIRED magazine and books like Future Shock and Bill Gates, The Road Ahead. Included in this group are most scientists, novelty-seekers, early-adopters, programmers and technophiles.

Placed on a chart, future progress will continue upwards in a logarithmic fashion, with each year bringing the same amount of change as last year. Eventually this incremental change will lead to people living to a hundred, and optimistically in a society with clean energy, general economic prosperity, and conservative space exploration scenarios.

In my experience most of the people described above think about the future in relatively conservative terms. If you ever read a future oriented article by one of them they often say things like, “This probably won’t happen in my lifetime, but perhaps my children or grandchildren will live to see it”, If you ever read a quote like that you know you’re reading someone at SL1. Almost every report that comes out of NASA is hopelessly stuck at SL1.

Shock Level 2

Degree of Change: Logarithmic to Exponential

Technologies: major genetic engineering, medical immortality, interstellar travel, and new “alien” cultures.

At this level you’ll find your typical SF Fan. Literary SF and cutting edge magazines like Mondo 2000, Omni or Future magazine of days past were filled with Level 2 ideas. Ironically, I don’t know of a single popular SF movie or TV show that exists comfortably at this level. Not even Star Trek qualifies for SL2, as it barely considers life spans past 100, with immortality remaining the exclusive domain of “super-advanced aliens”.

Up and until the 1980’s there wasn’t much discussion of future change past level 2, except in the most limited sense. This is probably because the concept of radical accelerating change was still beyond the radar of almost every forward thinking person at the time. Enabling Level 3 technologies like molecular nanotechnology were not even considered then. The only exceptions I know of are Robert Anton Wilson and Timothy Leary, who were completely at home with post-human evolution (SL3).

Shock Level 3

Degree of Change: Exponential

Technologies: Immortality, nanotechnology, human-equivalent AI, intelligence increase, mind uploading, total body revision, intergalactic exploration, megascale engineering.

Clearly identifiable people didn’t exist at this level until the 1980’s when groups like the Extropians and transhumanists emerged. Writers like Robert Anton Wilson, and Timothy Leary with his SMI2LE concept were the first people to my knowledge who discussed this level in any depth. However, it wasn’t until Eric Drexler published his book Engines of Creation that finally set the stage for concrete, detailed technological speculation of SL3 possibilities.

Shock Level 4

Degree of Change: Exponential to Hyperbolic (Accelerating Acceleration)

Technologies: Singularity, Matrioska “Jupiter” Brains, Powers, complete mental revision, ultraintelligence, posthumanity, Alpha-Point computing, Apotheosis, the total evaporation of “life as we know it.”

The only people I know who are comfortable discussing change at this level are Singularitarians, and some cutting edge psychedelic pioneers like Terence McKenna and John Lilly. Olaf Stapledon in his book Star Maker waxed poetic about SL3 megascale engineering and SL4 ultra-intelligences, and John Lilly discussed multiple encounters with a SL4 intelligences, which he gave names like “ECCO” and “Solid State Entities”. The first writer to bring this into concrete technological terms was Vernor Vinge in his 1993 paper . These ideas were soon picked up by Extropians and Transhumanists, but as far as I know it wasn’t until the Singularitarians that this level was embraced concretely and enthusiastically.

As Eliezer Yudkowsky says, If there’s a Shock Level Five, I’m not sure I want to know about it!

Eliezer goes on to say,

“If somebody is still worried about virtual reality (low end of SL1), you can safely try explaining medical immortality (low-end SL2), but not nanotechnology (SL3) or uploading (high SL3). They might believe you, but they will be frightened – shocked.

That’s not to say you can’t do it. In fact, you can take advantage of the future shock to carry the idea. You just have to be careful.

By a similar token, a Singularitarian can shock a science-fiction fan, but not an Extropian – the Extropian will be interested, perhaps enthusiastic, but not shocked. (Of course, if the person was already enthusiastic about Transhumanism, they might be wildly enthusiastic about the Singularity.) An Extropian can shock your average Wired reader, but should be careful about trying this with the “person on the street” – they may be frightened. And so on. In general, one shock level gets you enthusiasm, two gets you a strong reaction – wild enthusiasm or disbelief, three gets you frightened – not necessarily hostile, but frightened, and four can get you burned at the stake.”

From FUTURE SHOCK LEVELS by Paul Hughes (2004)


Eugenics is a set of beliefs and practices that aims at improving the genetic quality of the human population.

Obviously it is a hot-button issue. Most groups become hysterical when you suggest limiting their right to reproduce (especially if said group fears they will slip from being the majority to being the minority).

They get even more hysterical when they are prevented from reproducing by being put to death.

However there are other troubling questions. The main one is exactly what sort of measuring standard are you using to define "improved"? Almost as troubling is "who decides the measuring standards, and who does the measuring?" Obviously those in power can abuse this as a nasty form of ethnic cleansing.

More innocently, harm can mistakenly be done. For instance, sickle-cell anaemia is a genetically caused disease which occurs when the person inherits two allele of the sickle cell trait. People suffering from it rarely live past age 60. So that allele should be eugenically eliminated, right? Wrong! People with one allele are resistant to the even more deadly disease malaria. In this case, using eugenics would do more harm than good. The same holds true for the cystic fibrosis allele and cholera.

There is also the fear that such manipulation will reduce genetic diversity thus leading to inbreeding depression. In Beyond This Horizon by Robert Heinlein, genetic selection for increased health, longevity, and intelligence has become so widespread that the unmodified 'control naturals' are a carefully managed and protected minority.

Finally there is all those hideous overtones of Nazi Germany.

A milder form of eugenics is when the decision is made by the parents, not the government. You generally see this in science fiction with in vitro fertilization and a doctor giving the parents genetic counselling. The doctor gives the parents a list with check-boxes so the parents can chose what traits they want in their offspring, and advises them to omit obvious genetic diseases. The choices are fed into the machine, there is some quick genetic engineering on the zygote, then it is ready to be implanted (or popped into the artificial womb). See the movie Gattaca.

I don't trust people to genetically 'design' their child because I see what they do with character creation in games.

From a thread in Reddit: Shower Thoughts by Slimebeast (2016)

There are many ways to implement eugenics.


After homo sapiens becomes a multi-planet species, the question becomes, would we remain a single species of humanity? Scott Solomon thinks a lot about this question in his new book Future Humans, which will be published by Yale Press in October. In it, he explores the future evolution of our species, including some musings on Mars.

“The general concept for the book is to ask about our ongoing evolution, from the perspective of a scientist who takes what we know about our past, what we know about today, and thinking about the long-term possibilities for our species,” Solomon, a biologist at Rice University in Houston, said. What, he wondered, would it take to lead to development of a new species? Put another way, how long would humans on Mars remain human?

Solomon explained that new species evolve most commonly when a barrier prevents a population from mating, such as on an island archipelago, so species on separate Galapagos islands evolve along separate lines. With modern humanity, of course, the trend is going in the opposite direction, as people move around the planet at a rate unprecedented in human history. “So on planet Earth it would take a major change to imagine us having populations isolated long enough to have distinct species,” he said.

The gulf between Earth and Mars might present such a barrier, if the Martian colony were self-sustaining and persistent. Through natural selection, humans and any organisms they bring with them, such as a plants, may evolve and adapt to Mars' harsh environment and low gravity, which is only a third of Earth's gravity.

Lacking a magnetosphere, Mars is bombarded by an increased rate of radiation, which also favors speciation. Ionizing radiation causes mutation in genes, which would provide a source of new genetic variations. That could accelerate the process of adaptation. On the downside, Solomon said, the higher radiation might just kill people. Or it might cause colonists to perpetually huddle inside small habitats and space suits, leading a Morlock-like existence and facing a similar evolutionary fate.

Ultimately it still may take a long time for speciation to occur. The one solid data point we have on Earth is the colonization of the Americas, which were settled by waves of people moving across the Bering Strait around the end of the last ice age. These populations were then isolated from the rest of world for about 10,000 years. When Europeans arrived they found a distinct population of native Americans, Solomon said, but certainly not a different species. That would suggest that, on a planet with a similar atmosphere and gravity as the Earth, it would take a human population more than 10,000 years to speciate. Mars is not that planet, of course.

Another factor to consider as humans contemplate colonizing other worlds, Solomon said, is the “founder effect,” which simply means that when a small number of people establish a new population from a larger population, the genes of the founders will have a huge influence on that population moving forward. This occurred with the small bands of humans spreading out from Africa.

“I’m thinking about what the long-term fate of our species may be,” Solomon said. “When selecting colonists I don’t believe we should be trying to select what attributes we want in a new species of humans. But it’s interesting to think that if you were to take only people from certain populations, or try to include a diversity of all of humanity, how those outcomes would be very different for the potential of what might become a new species of humans.”


Quote Brain Wave has been moved here.


Nothing to do with corn

“Ladies, Lords.

Today, with the advent of cheaply available nanomutagens, we are seeing an explosion in human genetic alteration ranging from pre-natal to geriatric–and from targeted risk factor reduction to wholesale alteration of secondary sexual characteristics. The government does not possess any agency for regulating such operations, and the recent passage of court bill 2301AP-8903 legally binds it to inaction. I believe this is a failure on the part of this committee, inasmuch as we are obligated to also advise policy.

The problem is that legalization of all such genetic engineering doesn’t merely pass the burden of inevitable failures onto the expectant parents or individual requesting the treatment (as the legislature appears to have concluded); it also creates a sociogenetic debt.

True, we have overseen the almost complete eradication of the more common genetically linked susceptibilities–as well as single-gene genetic disorders proper, such as CF and TS in the last decade alone. In the case of the former, we can all agree that eliminating the most common ΔF508 mutation was a triumph of science and humanity.

But what about myopia? If present trends continue, genes for imperfect eyesight will be ruthlessly bred out until no human wears eyeglasses. Gone will be the bespectacled academic, the horn-rimmed librarian, the bookish teen. This correction of a genetic fault will thereby alter our culture.

People have preferences for hair, eye color, and so on. So far, diversity has been preserved only by the presence of differing racial and societal expectations of attractiveness. But already we see evidence of women crippled by their parents’ absurdly idealized notions of beauty, especially body weight, and men too Hellenistically sculpted to fit into standard space suits. We’re at an inflection point where an entire generation could be born blond if some hypothetical singer with sandy hair became sufficiently popular.”

TS [2301-05-22 13:28, 2301-05-22 13:33]

End of Natural Selection

A concept that appears in science fiction once or twice is that "humans have stopped evolving", specifically technology and medical science have drastically hindered the process of natural selection. For instance, in primitive times a person with the genetic disease Phenylketonuria probably would not be able to survive long enough to reproduce (natural selection will prevent passing on the genetic disease). But currently modern medicine can detect the disease in newborns, and treat it with a special diet. In other words the person would survive long enough to pass it on to their offspring, thus thwarting natural selection.

Sir David Attenborough stated "We stopped natural selection as soon as we started being able to rear 95–99 percent of our babies that are born." Others have pointed out that while that might be true of 1st world countries, it is far from being true for the entire world.

In the Alan E. Nourse novel The Bladerunner (no relation to the movie of the same name) the world of the future has free, comprehensive medical treatment is available for anyone so long as they qualify for treatment under the Eugenics Laws. Preconditions for medical care include sterilization, and no legitimate medical care is available for anyone who does not qualify or does not wish to undergo the sterilization procedure (including children over the age of five). The ideas is to stop thwarting natural selection.

Others say humans are indeed still evolving, all we have done is shifted a large number of selective forces. While modern medicine has averted many biological cause of natural selection, one can see many new versions of natural selection by just perusing the Darwin Awards. In other words: deadly diseases has been replaced by Jackass.

A tangentially related concept appears in the Cyril Kornbluth short story The Marching Morons (which later inspired the movie Idiocracy). In the story, married couples who are intelligent tend not to have children, while unintelligent couples breed like cockroaches. After several hundred years of this, the average intelligence is what we would currently call an IQ of 45. The few intelligent people have no idea how to stop the collapse of society, but lucky for them a con artist who had been in suspended animation for 300 years has an answer that is effective (abet draconian).

The main flaw with the story is that the possibility of genetically breeding for stupidity is unproven.


"When did mankind lose touch with natural selection? No matter how inferior a human's genes are, that person is protected by laws, and can't be killed. Even those incapacitated in accidents or stricken with a serious illness are needlessly kept alive. What a drawn out, wasteful existence. It's this divorce from natural selection that has caused mankind to stop evolving. It's a step down. The devolution of mankind. But I intend to accelerate the culling of genetically inferior humans. To rekindle the refining fire of natural selection!" — Hans Davis, Metal Gear Ac!d

Some evil mad scientists use their twisted intellect solely for personal gain. This particular villain is not so provincial. His genius and his motives go hand in hand, and his concerns are (he thinks) with the welfare of the human species. Simply put, to the Evilutionary Biologist, humanity is stuck in an evolutionary rut, and it's up to him to put us back on the proper path so we can continue to evolve.

Why the Evilutionary Biologist believes this is necessary varies, as do his methods. Some Evilutionary Biologists simply believe that humanity has erred in its domination of the environment, and thus our very survival as a species is threatened unless they force us to continue evolving. Others see change and so-called improvement as goals in and of themselves, and resolve to use scientific advancement to cause them. Still others seek to create a new race of biologically superior transhumans or just the Ultimate Life Form with the power of science, either because they see humans as having outlived their time on the planet or because of a genuine desire to improve the human condition. They often subscribe to the philosophies of Social Darwinism and "The Ends Justify the Means". It's not uncommon for them to practice what they preach and marry a woman they see as fit and worthy for them and father a Mad Scientist's Beautiful Daughter.

Regardless, because of his dedication, the Evilutionary Biologist is willing to break laws, engage in experimental alterations upon other human beings, and ruin lives for the higher goal. Their creations are no less exempt; whether they're Replacement Goldfish, with the Cloning Blues, or genetically "programmed" to have evil In the Blood, their "children" are doomed to live sad, short, rebellious lives, unless they really do feel parental. They will never realize that Evil Evolves, and will never be able to identify themselves as the villains.

Evilutionary Biologists often create inhuman monsters and artificial humans to serve as minions and Mooks, as well as to populate their extensive Garden of Evil. They themselves may even be willing to suffer the fruits of their experimentation, often resulting in a monstrous, inhuman new body.

Whenever an Evilutionary Biologist appears on the scene — they are the most common form of villainous biologist in many games and Speculative Fiction media — be on guard for a Science Is Bad aesop to rear its ugly head.

This is especially ironic because in real biology, one of the core precepts of the theory of evolution is that it does not "improve" a species, because there is no such thing as an ideal form for a species — only what is best* at surviving and reproducing in current conditions. If the environment changes, the species must adapt all over again, which is why genetic diversity (Nature's way of "hedging her bets") is usually a good thing. Moreover, assuming that a species must evolve if subjected to imposed selection pressures (or Phlebotinum-induced mutations) overlooks the harsh fact that most organisms don't adapt in the face of such challenges: they simply go extinct, which is why we're not rubbing elbows with mammoths, sauropods and trilobites today. Deliberately applying such selective forces to humans may let us join them in extinction, not improve upon our current state. Finally, evolution is conservative, and a species which is thriving (you know, like Homo sapiens) is unlikely to evolve new traits, because it's doing fine the way it is. Sharks, for example, haven't changed much since before the first dinosaurs appeared, and they're just as successful as ever...making the entire mania of the Evilutionary Biologist suspect at best.

Even so, Goal-Oriented Evolution was taken dead seriously by many in the heyday of the Eugenics Movement, and still gets cited by people who really ought to know better (Singularitarians are frequently guilty of it).

Examples of this trope will probably be German, and possibly one of Those Wacky Nazis, if we want to be really obvious.

Compare Designer Babies.

* Or rather "good enough". Products of evolution are often The Alleged Car of the natural world. Go figure

(ed note: see TV Trope page for list of examples)


     But I can tell you what sort of a planet it is (Planet Sanctuary). Like Earth, but retarded.
     Literally retarded, like a kid who takes ten years to learn to wave bye-bye and never does manage to master patty-cake. It is a planet as near like Earth as two planets can be, same age according to the planetologists and its star is the same age as the Sun and the same type, so say the astrophysicists. It has plenty of flora and fauna, the same atmosphere as Earth, near enough, and much the same weather; it even has a good-sized moon and Earth's exceptional tides.
     With all these advantages it barely got away from the starting gate. You see, it's short on mutations; it does not enjoy Earth's high level of natural radiation.
     Its typical and most highly developed plant life is a very primitive giant fern; its top animal life is a proto-insect which hasn't even developed colonies. I am not speaking of transplanted Terran flora and fauna—our stuff moves in and brushes the native stuff aside.
     With its evolutionary progress held down almost to zero by lack of radiation and a consequent most unhealthily low mutation rate, native life forms on Sanctuary just haven't had a decent chance to evolve and aren't fit to compete. Their gene patterns remain fixed for a relatively long time; they aren't adaptable—like being forced to play the same bridge hand over and over again, for eons, with no hope of getting a better one.
     As long as they just competed with each other, this didn't matter too much—morons among morons, so to speak. But when types that had evolved on a planet enjoying high radiation and fierce competition were introduced, the native stuff was outclassed.
     Now all the above is perfectly obvious from high school biology . . . but the high forehead from the research station there who was telling me about this brought up a point I would never have thought of.
     What about the human beings who have colonized Sanctuary?
     Not transients like me, but the colonists who live there, many of whom were born there, and whose descendants will live there, even into the umpteenth generation—what about those descendants? It doesn't do a person any harm not to be radiated; in fact it's a bit safer—leukemia and some types of cancer are almost unknown there. Besides that, the economic situation is at present all in their favor; when they plant a field of (Terran) wheat, they don't even have to clear out the weeds. Terran wheat displaces anything native.
     But the descendants of those colonists won't evolve. Not much, anyhow. This chap told me that they could improve a little through mutation from other causes, from new blood added by immigration, and from natural selection among the gene patterns they already own—but that is all very minor compared with the evolutionary rate on Terra and on any usual planet. So what happens? Do they stay frozen at their present level while the rest of the human race moves on past them, until they are living fossils, as out of place as a pithecanthropus in a spaceship?
     Or will they worry about the fate of their descendants and dose themselves regularly with X-rays or maybe set off lots of dirty-type nuclear explosions each year to build up a fallout reservoir in their atmosphere? (Accepting, of course, the immediate dangers of radiation to themselves in order to provide a proper genetic heritage of mutation for the benefit of their descendants.)
     This bloke predicted that they would not do anything. He claims that the human race is too individualistic, too self-centered, to worry that much about future generations. He says that the genetic impoverishment of distant generations through lack of radiation is something most people are simply incapable of worrying about. And of course it is a far-distant threat; evolution works so slowly, even on Terra, that the development of a new species is a matter of many, many thousands of years.

From STARSHIP TROOPERS by Robert Heinlein (1959)

Improving lives doesn’t.

Among the baker’s dozen of known galactic species that crawled their way to sapience, sociopsychologists were astonished to find that every one of them had the same intelligence. The bipeds from Earth, the avian dinosaurs from that one outer rim world, the furry bear-creatures that ate methane, put any together and they score within 10 points of each other on an IQ test. This wasn’t true for any other attribute. (Im)mortality? widely varying. Genders? Different systems. Biochemistry? Carbon through Arsenic. Size, shape? Hell no.

But intelligence? Why that?

It turns out that entry-level sapience evolves as a survival trait. Hunt/find your food, develop technologies to make that easier, maybe do some farming, and so on. After basic establishment of civilization, mortality drops by factors in the hundreds or thousands. Population booms, and you start getting plagues from the species concentrating in cities.

This is where it gets interesting. See, once you have plagues, you need doctors. And once you have doctors, you start thinking about all of the other ways to cheat death. So the plagues are beaten back by vaccinations or antibiotics, and then your civ starts concentrating on welfare and quality-of-life.

Pretty soon, your species is living at the maximum, or nearly, of their theoretically longest lives. For some species, this is an extension from a lifespan of decades to millennia.

This is bad.

At best, evolution stagnates. Your weak and stupid have the same chance of reproduction as anyone else–and they’re certainly not going to die before influencing their environments. Diseases that should have killed are mere annoyances, chomping futilely against a barrier of solid medical science. Predators that once ravaged tribes now are confined in zoos or hunted to extinction.

So no one gets any smarter.

The long and short of it is, after a certain point, intelligence is no longer a tremendous advantage to survival and, subsequently, traditional selection factors are abrogated completely. That is point at which medical science develops, which itself happens only when sapients begin the process of introspection and develop sympathy–that is, shortly after the development of sapience itself.


(ed note: Councilor Lake is a sector governor of the Union. Velmeran is an alien Starwolf. Valthyrra is a Starwolf artificial intelligent computer.)

     Which was much easier said than done, Councilor Lake reflected. And just the beginning of his own problems. The human race was dying, or at least degenerating to the point that it could no longer care for itself. The genetic message that made a human was deteriorating; random, detrimental mutations were not only occurring at an alarming rate but were being passed into the common genetic pool. There was no determining the exact cause, although the Councilor preferred to believe that mankind had been too long removed from the laws of natural selection that had guided its evolution.
     People were smaller than they had been in the first days of space flight, slighter of build and gentler of mood and feature. Unfortunately, people were also less intelligent than they had been, less able to reason and remember. Mental deficiency and imbalance claimed a fourth of the population, and another fourth was genetically sterile. It was a problem that had been a very long time coming, but it had finally become so bad that the High Council could no longer ignore it. For in another thousand years the machinery of the Union, of human civilization itself, would grind to a halt for want of maintenance. That might seem like a very long time, but for a problem fifty thousand years in the making, it was already too late.
     Still, Councilor Lake wanted to save what he could. And if stern measures were taken now, a large part of the Union could be saved. The only solution was to enforce the sterilization of large segments of the population, intervening where nature had failed. The general population would not take such controls lightly. The military would be needed to enforce order, especially on those worlds that bore little love or loyalty for the Union from the start. And for that, the problem that the Starwolves represented would have to be eliminated. Or at least reduced to a manageable level.

     "But if we (Starwolves) are not destroying the Union, what is?" Velmeran asked.
     "We see the results, but we can only argue the cause," Lake explained. "Personally, I believe it is because we were not meant for civilized life. Nature gave us hands and a brain so that we could tie a rock to a stick to make a better club. All the rest has been our own idea. Then we began the process of removing ourselves from our environment, the circumstances and conditions that shaped us. Our evolution has stalled out; our civilization promises equal chances for both the weak and strong, and nature intended harsher rules. Cut off from any shaping influence, our species has begun to decline right down to the genetic level.
     "The genetic code that defines a human is becoming too foggy and ragged to read properly. Over a third of our population is genetically sterile. Random mutation has driven infant mortality to levels that we have not known since the dark ages. Mental deficiency and mental imbalance claim a quarter of the population. Do you wonder if we are not in trouble? Our race is dying out, for want of proper maintenance."

     "There is something that I would like to know," Velmeran said quickly. "Have you kept any statistics on the genetic deterioration of the human race?"
     "Genetic deterioration?" Valthyrra's lenses seemed almost to blink in confusion. "Actually, it is hard for me to make any valid observations, but that does not change the fact of its reality. Our own human worlds are in slow decline, and there is every indication that the Union worlds are proceeding at a much greater pace. Especially the inner worlds — it is getting so bad that if all the machines were to suddenly stop, it is doubtful that they could ever get anything running again."
     "Why?" Velmeran asked.
     "Because Mother Nature is a stern mistress," she explained, the information analysis, storage and retrieval systems in her warming to the task. "The one rule of all life is change, and the driving force is survival. But that is a game that modern, civilized man has not been forced to play in nearly sixty thousand years. Nature intended that only the best should thrive and multiply, but for so long now nearly everyone survives — and reproduces indiscriminately. Change continued, but in a random, ineffectual manner, and once begun the process accelerates itself.

From THE STARWOLVES by Thorarinn Gunnarsson (1988)


In the real world, a Mutant is an organism that suffered a mutation while in the embryonic state. The natural occurrence of genetic mutations is integral to the process of evolution.

The vast majority of mutations either [A] have little or no noticeable effect or [B] kills the embryo before it can be born. The process of evolution is advanced by zillions of tiny mutations over zillions of generations, culled by the relentless forces of natural selection.

No, exposure to radiation will not turn you into a mutant. But if your gonads are irradiated, your future children might be.

Early science fiction authors either didn't understand mutations or found the actual process incredibly boring. So they jazzed it up.

They frantically waved their hands and breathlessly announced that mutation could lead to the Next Stage Of Human Evolution™ !

This concept contains two ignorant fallacies for the price of one. First off it makes the ridiculous assumption that there are "levels" of evolution (measured by what metric, pray tell?) then it compounds the stupidity by postulating that evolution is working towards a specific goal ("orthogenesis") and you can use these non-existent evolutionary levels to measure the progress to the non-existent goal. The tell-tale sign of the latter is the phrase "more evolved."

In reality, the only "goal" of evolution is for the organism to be able to survive and thrive in whatever the current conditions happen to be in this geological epoch. Since conditions change with time, the goal of evolution is a moving target.

Early SF writers who were evolution-theory morons assumed that "intelligence" was the goal of evolutionary progress, the "ultimate life-form" at the top of the evolutionary ladder. The ultimate intelligent life-form was some sort of giant brain. Examples include the Arisans from E. E. "Doc" Smith's Lensman series.

This would lead more evolved females to demand Cesarean section. You see the relatively large size of the human baby's head is the reason why of all the species on Terra, humans are pretty much the only ones who suffer painful child birth. The evolution of a larger pelvis has not kept up with the evolution of larger baby heads.

Latter writers assumed that the goal was a set of superhuman abilities (you know: super-strength, advanced intelligence, immunity to various lethal things, and of course psionic abilities). Examples include Adam Warlock. Others cut to the chase and postulated that the end goal was to evolve humans into energy beings. Examples from Star Trek include the Organians, the Q, and arguably the Melkot, the Thasian, the Metrons, the Medusans, and the Zetarian.

The "levels of evolution" nonsense also lead to nonsensical stories where radiation from nuclear testing creates a crop of mutant children all with the same mutation. In reality mutations are more random than Pi. Not all such stories have this flaw, but there are enough to be really annoying. The only way to get lots of mutants with the same random mutation is if they share a common ancestor.

The stupid writers also got the mechanism wrong. In reality if somebody was exposed to a mutagen, their future offspring might be mutants because the DNA in the germ cells got mangled prior to procreation. But the writers were under the misapprehension that the mutagen would transform the poor exposed person into a mutant on the spot, much like the way cosmic ray exposure created the Fantastic Four. This erroneous concept was apparently created by Hugo de Vries in his 1901 story Die Mutationstheorie.

Mutants are not just people either, don't forget the radiation-spawned giant ants in the movie Them!.

None of this is scientifically accurate, but it is very exciting reading.

In Edmond Hamilton's 1931 story The Man Who Evolved, the concepts were twisted for a shock ending. The mad scientist Dr. John Pollard figures out that cosmic rays are responsible for evolution (sort of true) so exposing a person to concentrated cosmic rays will rapidly evolve them to the next stage of evolution (nope, author is unclear on the concept, it will just fry them to a crisp). With each treatment his brain becomes larger while his body becomes more spindly. At the next to the last stage he is nothing but a huge brain feeding on telepathic energy. Unfortunately for him the final stage is a pathetic primitive single-celled organism. Because apparently the levels of evolution are arranged more as a circle than as a rising staircase.

After 1945 science fiction writers finally got it through their heads that radiation would cause you to have mutant children, but not grant you any unusual powers apart from a drastically shortened lifespan. But they were still stuck on that goal oriented evolution nonsense.

The authors did however invented a brand new trope: a world wide rise in the number of mutants born due to either nuclear testing or in the apocalyptic aftermath of a nuclear war. "Children of the Atom" so to speak.

In science fiction, mutants from low level rises of background radiation due to nuclear testing tend to be superior beings with super powers. The X-Men and Perry Rhodan's Mutant Corps fall into this category.

Post-atomic-war mutants on the other hand tend to be pathetic cripples with misshapen bodies and the wrong number of limbs. In Forrest J. Ackerman's shaggy-dog story The Mute Question, the muties have a proverb: two heads are better than none.

The muties of Heinlein's Orphans of the Sky fall into this category, though in this case the radiation is not from an atomic war. As it turns out the mutie Joe-Jim also has two heads.

In the X-Men stories there is often deep-seated prejudice against mutants, since average humans have the not unreasonable fear that mutants will supplant them. Draconian anti-mutant laws are passed, and periodically there are attempts at mutant genocide. Which just goes to show what idiots average humans are. Especially given the stupendous superpowers possessed by mutants and how angry they become when you try pulling that "final solution" atrocity on them.

There is also plenty of "mutants are evil" garbage in John Wyndham's The Chrysalids. Take a post-nuclear apocalypse community with about Amish levels of technology, mix in an oppressive religion with a paranoid fear of the new, and you have a formula for a real eugenic nightmare. Mutations are considered to be "Blasphemies" and must be either killed or sterilised and banished to the Fringes.

In the Perry Rhodan novels, Terra discovers that the solar system is surrounded by highly advanced interstellar empires that would love to annex the planet. He needs an ace-in-the-hole or Terra is doomed. The Mutant Corps is a team of mutants with psionic powers which the alien empires cannot cope with. The 18 founding-members were mostly Japanese who were born shortly after the atomic attacks on Hiroshima and Nagasaki. The X-Men are sort of the Marvel comics version of Perry Rhodan's Mutant Corps, since X-Men issue #1 came out about two years after Perry Rhodan volume 6.

The archtypical superhuman mutants are the Slans from the eponymous novel by A. E. van Vogt. Every subsequent novel with "Homo Superior" mutants owes something to the Slans (though the novel is sadly unknown nowadays). When it came out, science fiction fans embraced the concept. This is because they naturally figured that they were Slans. The fans started using the pejorative term "mundane" for non-fans, sort of a science-fiction-fan version of the term "Muggle." A house or building where lots of SF fans lived was called a "Slan-shack."

There are a couple of science fiction novels dealing with mutants and galactic empires. They imply that mutants tend to appear when an empire is in the "decline and fall" stage. In his immortal Foundation and Empire, Isaac Asimov has the mutant the Mule appear during the Dark Ages after the fall of empire. In Andre Norton's Star Ranger the historian mentions that the current time of galactic empire collapse is when "change mutants" make their appearance.

Other novels mention dark rumors about how mutant occur on those planets beyond the rim of the galactic empire. An example is John Brunner's Altar On Asconel.

In Jack Williamson's Seetee Ship and Seetee Shock, the children of asteroid miners occasionally are born with abilities useful in the space environment. Rob McGee is immune to radiation, and has an ability to sense gravitational masses. This allows him to navigate the asteroid belt with relative ease. McGee is the first evidence of asterites evolving into humans suited for living in space.


Blink now, and man is creeping along the galactic rim, in those areas which were later to be regarded as the home of mutants and pirates—but which, significantly, were and remain the only areas where interstellar ships have been built by human beings.

(ed note: Human Empire ships are xenopaleotechnology inherited from a long extinct Forerunner race)

“From me you won’t get the full story,” Vix countered. “I guess no one knows it except those devils on Asconel—Bucyon, and the witch Lydis, and maybe that monster Shry!” He shot a keen look at Spartak. “You flinched when I said ‘witch,’ and ‘devil’ too—don’t you hold with such terms?”

Spartak looked at the table before him, choosing his words carefully. “There are certainly records of mutations developing possessed of what are generally called supernormal talents,” he granted. “Indeed, it was part of Imperial policy for some millennnia to maintain the stability of the status quo by locating such mutations and—if they hadn’t already been put to death by supersititious peasants or townsfolk— transporting them to the lonely Rim worlds. There are said to be whole planets populated by such mutations now. But words like, ‘witch’ have—ah—unfortunate connotations.”

From THE ALTAR ON ASCONEL by John Brunner (1965)

     “I believe that you did break free from him,” Zicti said soberly. “Which is why I have laid the compulsion on you — But, let us examine the facts — you men of Ylene are six point six on the sensitive scale, are you not?”
     “Yes. But Arcturians are supposed to be only five point nine— ”
     “True. But there is always the chance lately that one may be dealing with a change mutant. And this is the proper time in the wave of history for change mutants to appear. A pity we do not know more of Cummi’s background. If he is a mutant that would explain a great deal.”
     “Mutants!” Kartr repeated and he shivered. “I was on Kablo when Pertavar started the Mutant Rebellion— ”
     “Then you know what can come of such an upcurve in mutant births. There are good and bad results from all changes.”

From STAR RANGERS by Andre Norton (1953)


"Immortality" means being partially or fully immune to dying from old age. You can still die from starvation, being blown out an airlock with no spacesuit, or being drilled between the eyes by a laser rifle.

"Invulnerability" on the other hand is being remarkably difficult to kill. Having a body composed of diamond, Wolverine-levels of regeneration, resurrection like Count Dracula, that sort of thing.

Having one of these abilities does not necessarily mean you have the other. TV Tropes calls having both Complete Immortality.

Immortality is a perennial favorite, since practically nobody wants to die. I'm not kidding. The concept dates back at least to the The Epic of Gilgamesh (circa 2100 BCE) the earliest surviving great work of literature.

"I don't want to achieve immortality through my work. I want to achieve it through not dying."
— Woody Allen

Yes, we don't live forever. People and animals change as they age, and eventually catch disease and die.

Eternal life is ingrained in the collective human consciousness, having been present in literature and myths for as long as they've been around. Literally. The Epic of Gilgamesh (the oldest heroic epic known to the modern world) is, in large part, about the titular character's search for a way to live forever.

Of course, having been around for so long, Our Immortality Is Different, and comes in several flavours. These tropes are not mutually exclusive; there's plenty of room for overlap.


For general tropes relating to immortality, see This Index Will Live Forever.

But the invention of any new technique of prolonging lifespan is guaranteed to create major problems in the society and political power structure.

For one thing, unless you pass laws about term limits and maximum age of political office, you've suddenly got a gerontocracy on your hands.

For another, if the lifespan lengthens to past about 500 years or so, you'd better limit the number of children allowed to a family or overpopulation will make a reappearance. Once you have death control you have to have birth control or you'll be standing on Zanzibar. Logically, the reason any species has the ability to procreate is because they are mortal. Otherwise the species would go extinct. Remove the mortality and you remove the need for procreation.

Naturally, this becomes less acute if immortality is not for everyone, but just for a privileged few. Even if that spoil-sport Immanual Kant says it is immoral to do something that is only bad if everybody does it.

TV Tropes calls this the Immortal Procreation Clause: The fertility of a species is inversely proportional to its lifespan. Thus, as a species approaches immortality, their birth rate approaches zero. This can be the result of natural infertility, or because they don't want to be up to their eyebrows in squalling babies so contraception is employed.

On a broader level there is the problem that reducing the birth rate also reduces the evolution rate of the species. No children, no evolution. Keeping in mind that the invention of modern medicine has already put a damper on evolution.

There are other problems with immortality, over and above the literary motive of saying it is just plain immoral for some reason or another.

It has often been noted that in society "the rich get richer." At least nowadays the super rich eventually die so their wealth is divided among the children. But an immortal rich person is just going to keep getting richer. The same goes for a politically powerful immortal. They keep getting to be more powerful and are never removed by death.

In "The Martyr" by Alan E Nourse the invention of immortality puts the breaks on progress. They can only give the treatment to 500 carefully selected people each year, but after a couple of decades the effect is quite noticeable. The starship project stalls because there is no motivation to get things done in a timely fashion. Since each treatment adds another sixty years to your life, why not spend yet another year on starship testing just to be absolutely sure? And the politicians start becoming permanent fixtures. With each decade they just add to their repertoire of dirty political tricks, new novice politicians don't stand a chance. Stagnation.

The "lack of pressure" drawback is also featured in Between The Strokes Of Night by Charles Sheffield, in chapter 29.

In Isaac Asimov's The Naked Sun the Spacers have a lifespan of 400 years or so. They become hypercautious and terrified of disease, since they have so many more years to lose than a filthy Earthman with their three-score and ten. Spacers are also unbelievably conservative and resistant to change.

In many science fiction stories the supreme enemy of an immortal being is boredom. After ten-thousand years or so it is almost impossible for an immortal to find anything new, or even anything they've only encountered five hundred times before. In The Lost Worlds of 2001 Arthur C. Clarke said "There were few things that an immortal welcomed and valued more greatly than surprise; when there was none left in the universe, it would be time to die." This is explored in Raymond Z. Gallun's The Eden Cycle and Michael Moorcock's Dancers at the End of Time sequence where the protagonists must go to extreme and absurd lengths to keep ennui at bay.

In the role playing game The Burning Wheel, the Elves are immortal. As a consequence they are elegiac, tragic, and constantly grief-stricken. After all, the longer you live, the larger the number of friends you have seen die (generally in combat). Us older people have experienced a mild version of this: the older you get, the more of your beloved TV and movie actors you loved from childhood depart for that big silver screen in the sky. Especially in the year 2016.

In the movie Pirates of the Caribbean: At World's End Captain Teague tells Jack Sparrow: "It's not just about living forever, Jackie. The trick is living with yourself forever."

But immortality is not all bad. It comes in handy with slower-than-light space travel. Or even faster-than-light, the "anti-agathic" immortality drugs of James Blish's Cities In Flight series were developed because star travel at 20c still consumes a huge chunk of one's lifespan. In Robert Forward's Rocheworld, the drug No-Die slows the aging process to one-fourth the normal rate. Unfortunately it temporarily lowers intelligence by roughly the same factor. It is needed because the STL laser light-sail is going to take 42 years to fly to Barnard's Star, and a crew of retirement-age astronauts would do an exceedingly poor job of exploration.

Science fiction authors are also fond of teasing the reader about immortality. In Whatever Happened to Corporal Cuckoo? by Gerald Kersh the protagonist meets the eponymous Cuckoo who was born in 1507. He suffered a severe head trauma, and was treated by mad doctor Ambroise Paré with The Digestive (a concoction of oil of roses, honey, turpentine, and egg whites). This makes Cuckoo both immortal and invulnerable. Cuckoo wants to buy a farm to produce the needed ingredients so he can make a fortune selling The Digestive.

The protagonist torpeodes Cuckoo's plan by pointing out the wide variations in bee honey, eggs, et al. The chances of recreating the formula by using such organic ingredients is zilch.


(ed note: In this story, the galactic emperor is immortal. Which sounds like it would be dangerously easy to wind up with an empire ruled eternally by an undying tyrant. But luckily there is an unplanned safeguard.

The galactic emperor rules justly and with due concern for all those affected by his decisions. Because if not, the emperor dies.

You see every few decades, the emperor undergoes immortality treatments. These prevent the emperor from dying from old age. But there is a side effect. During the treatment, the emperor sees every single thing they have done in their life. With intense recall.

If the emperor has made too many decisions which were without empathy, which were cruel to those under the emperor's rule, the replay of those memories will kill him.)

". . . The Just, the All-powerful, the All-knowing, His Celestial Majesty, Tate the First!"

He sat down.

Nobody moved anywhere. This was no ordinary function, where he granted audiences or issued the decrees which could alter the destiny of whole stellar systems. This was the time when he had to prove his fitness to rule, or die. In utter silence he pressed one of the two studs set in the arm of his throne, and tried to relax as golden bands of beautifully worked metal closed around his limbs, chest, and head, holding him rigid.

When given before the age of forty and renewed every twenty years, the Immortality Treatment prevented the disease of senility and death from occurring in life based on the carbon series of compounds—which meant practically all forms of life. There were thousands of dogs, cats, and monkeys to prove that it worked. But in beings of higher intelligence—human or otherwise—it did not work at all, unless the being in question was mentally very, very tough.

The radiation which stimulated the regenerative centers produced other effects as well, some of them good, others quite fatally bad. The treatment increased the I.Q., and gave to the mind a perfect, eidetic memory. It also, for the few seconds duration of the treatment, so intensified the effects of what had come to be called the "area of conscience" that any being having sufficient intelligence to base his actions on a moral code had to take three seconds of the most frightful psychological torture ever known. He had to live with the cruel, debased, and utterly nauseous creature that was himself.

Many preferred to die rather than take three seconds of it. Most had no such choice—their life force was obliterated with the first, savage blast of self-knowledge.

This secondary effect of the treatment was experienced in a complete reliving of the past, with each incident diamond-sharp in visual, auditory, and tactile sense recall. But not only that. The mind was given a terrifying insight into the end results of that being's most trivial-seeming actions. Unthinking words or gestures made over the years and forgotten, when blown up by the triple stimulus of perfect memory, increased I.Q., and a hypersensitive "conscience" became lethal as a suicide's bullets. The mind just could not take such an overwhelming blast of self-guilt, even for three seconds, so it, and the body containing it, died.

Only one person had successfully undergone the Immortality Treatment.

Tate, though he had lived—with thirty-seven previous treatments—for seven hundred and sixty-eight years, still took only three seconds. And there was no blurring or telescoping of events. Each incident was complete, and though it occupied only microseconds of time, each bore its charge of guilt potential.

From DYNASTY OF ONE by James White (1955)

Technological Unemployment

Technological Unemployment is when a machine steals your job.

The classic example is back in the 1800s when all the artisan weavers angrily became Luddites because power looms stole their jobs and gave jobs to low-skilled cheap laborers.

(But the term "sabotage" did not come from Luddites tossing their wooden clog sabots into the the machinery. That is not supported by the etymology. I don't care what Lt. Valeris said in Star Trek VI. It is a common story, though.)

Anyway the economists will assure you that history proves there is nothing to worry about. Yes there will be some short-term pain as all the buggy-whip making jobs vanish, but in the long-term the march of technology will create more new jobs than were originally lost. Believing otherwise means you are an economic ignoramus making the mistake of falling for the Luddite Fallacy.

But around 2013 more and more economists became alarmed that this time it was different.

Up until now, machines were taking away jobs by replacing human strength. Now they were taking away jobs by replacing human intellect. Yuval Harari said “Humans only have two basic abilities — physical and cognitive. When machines replaced us in physical abilities, we moved on to jobs that require cognitive abilities. ... If AI becomes better than us in that, there is no third field humans can move to.”

It started slow. Personal computers with word-processing software drastically reduced the number of secretarial jobs. Income tax preparation software drastically reduced the number of tax preparation companies. Currently many fast food franchises are replacing food preparation workers with robots.

But that's OK said the economists. The displaced workers just need some more education so they can find jobs which have not been computerized yet. And they will be higher paying jobs, just you wait and see!

The economists got a rude shock when computers started taking away high-education jobs. That wasn't supposed to happen. It was also a chilling wake-up call to those with high-education jobs who had been smugly saying their jobs were safe.

For example, a new company called Enlitic applied Google's deep learning software TensorFlow to the task of diagnosing lung cancer by examining lung CT scans. They easily trained the software to do the work. Then they did a test where a panel of four of the world’s top human radiologists competed with the software. The results were dramatic. The human radiologists had a false positive rate (incorrectly diagnosing cancer) of 66%. The software had a false positive rate of only 47%. What is worse, the human radiologists had a false negative rate (missing a cancer diagnosis) of 7% while the software had a false negative rate of Zero.

Which means that once Enlitic trains their software on the other diseases, human radiologists will suddenly find themselves out of a job. The software will be cheaper than a radiologist's salary ($286,000/year), and can work 24-7. OK Mr. Economist, what sort of education would you suggest so these suddenly unemployed radiologists can find a better-paying job? Preferably a job that will NOT become lost to computer software before they even complete their education.

Such software is also making inroads into stealing such jobs as writing sports stories, journalism, computer programming, sewing garments, marketing, doing the job of junior lawyers by sorting through previous court cases and legal resources to find precedents, money management, and writing legal briefs. Not to mention financial analysts. And it is just a matter of time before general medical diagnosis falls as well.

The mood among economists is becoming grim. While many are still maintaining that new jobs will eventually replaced the vanished ones, their pronouncements are starting to sound a bit hollow. The economists who believe the jobs will not be coming back used to be a tiny minority, but a 2014 Pew Research revealed such economists are now more like 48%. Technology is now destroying more jobs than it creates. The Luddite Fallacy is on very shaky ground.

Oxford academics Carl Benedikt Frey and Michael A. Osborne published a study with the findings that almost half of U.S. jobs are at high risk of computerization over the next 20 years. Positions that are particularly vulnerable to automation include telemarketers, tax preparers, watch repairers, insurance underwriters, cargo and freight agents, and mathematical technicians. Driving jobs on mining sites are already being automated and long-distance truck drivers, forklift operators and agricultural drivers could be replaced within five to 10 years.

A more recent McKinsey report suggested today's technology could feasibly replace 45% of jobs right now.

And for jobs requiring lower education lost to automation, even if they are eventually replace in the long-term, the short-term can wreck the entire US economy if the number of jobs is huge enough. It can be a disaster if the transition is too fast. The advent of autonomous cars and driverless trucks could put five million people in the US out of a job. The point being that the US economy does not have the ability to create five million new jobs fast enough to employ these people.

There are those who say: but what about creative jobs? A robot might be stronger and a computer might be smarter, but can they make art? The first point is if you actually think you can solve the unemployment problem by teaching the unemployed to be artists, well good luck with that. The second point is yes, computers are starting to make art.

Taken to its logical extreme, eventually there won't be any more jobs. None, everything will be done by robots and computers. Which is a problem since in modern society one needs money in order to avoid starving to death. And there are not a lot of ways to get money without a job. Not legal ways at any rate. The only people with money will be the ones that own the robots, or have income from either stocks or being independently wealthy.

Yes, corporations that manufacture goods for sale are shooting themselves in the foot by firing all their employees and replacing them with robots. This reduces the number of potential customers (ones who have money to purchase your product at any rate). However this is a "tragedy of the commons" situation. Basically each company figures the declining number of customers is Somebody Else's Problem, not their problem. Even worse, if a company decides to virtuously hang on to their workers to maintain the number of consumers, the company will find itself at a competitive disadvantage with respect to all their evil competitors who use robots. The virtuous companies will go bankrupt from the unfair competition from the evil companies.

But the big point is any society is only three missed meals away from violent anarchy. If widespread technological unemployment increases, the problem will be solved either elegantly by government and society, or it will solve itself inelegantly by natural forces. Probably food riots and angry hungry people setting up lots of guillotines to take care of the robot owners. The French Revolution was over 200 years ago, but the situation is much the same and if we are unlucky so will be the solution. Everything old is new again.

And obviously the food riots are not going to hold off until 100% unemployment happens. They will start much sooner than that.

So what are the elegant solutions?

Banning/refusing innovation
Somehow slow down the rate of technological innovation. Yeah, like that's ever going to work. There is too much money to be made by corporations through innovation. And you'll need global enforcement, or innovation-banned nations cannot compete with illegal innovation-allowed nations (see Butlerian Jihad). Practically all economists won't even consider this as a solution.
Welfare payments
Subsidies and hand outs to those affected. This is a band-aid trying to treat a sucking chest wound. Welfare is intended to be a temporary solution to until the situation fixes itself. Unfortunately this situation is permanent and "those affected" will include about 90% of the population.
Basic Income
Give everybody a salary large enough for food and housing, for free. Of course the first question that arises is "where is all that money going to come from" and the answer is usually "by taxing the rich" (though there are some schemes that somehow privatize the money source). Some say it is a bad idea because it will be a disincentive to work, which overlooks the fact that the problem is there isn't any work to be had. There are many who say such a scheme will be inevitable because the only alternative is guillotines.
This is a re-hash of the "educate displaced workers with skills to get new jobs." Try telling that to the radiologists (who will probably become so enraged that they will double the number of bones in your body). Besides, there won't be any jobs to be educated into.
Public Works
In other words, create enough fake jobs composed of worthless busy-work to give everybody a job (see Featherbedding). This creates the illusion of full employment. Again the question arises: where will the money come from?
Shorter Working Hours
This boils down to "as the amount of available work shrinks, it will have to be rationed so everybody can have a job." Obviously this is a stop-gap measure, not a solution. If the amount of available work is now zero, so will be the size of your work-ration.
Broadening the ownership of technological assets
If the only way to make money is by either owning robots or owning stock, then the government will have to give everybody free robots and stock so they can live. Again, who is going to pay for this?

And there are those who say that the rich should foot the bill for a solution, telling them that this is the fee for "guillotine insurance."

But a commentator named Kalin said: The elites will share their wealth only insofar as it's cheaper to do that (bread and circuses) than it is to keep the proles at bay through force. What Marx saw as an inexorable trend towards socialism may have in fact just been a temporary consequence of the industrial revolution, wherein labor was especially important and the power of an individual worker was large in historical terms. It's not impossible to imagine a sort of "Neo Feudalism" where a small minority of elites find it cheaper to maintain control via technological force-multipliers than to share their earnings such that everyone is actually happy or nearly so.

In other words, the rich will do the math and may well discover that a private army is cheaper than funding a Basic Income.

EWreckedSean observed: "This is how we get a Kwisatz Haderach..."


Mass automation is undermining our democracy in a very specific way: it's acting as the ultimate "resource curse."

"Countries with an abundance of natural resources, specifically non-renewable resources like minerals and fuels, tend to have less economic growth, less democracy, and worse development outcomes than countries with fewer natural resources."

Scholars debate the causes of the resource curse, but one popular theory has to do with the way autocrats fund themselves relative to democracies.

Autocrats, it turns out, need a lot of wealth to pay their cronies. No dictator rules alone; they need someone to run the military, someone to collect the taxes, and someone to enforce the laws. Those people have to be paid, and handsomely, or they'll overthrow the dictator (or just allow the dictator to be overthrown). This is called "selectorate theory" and this video is a great introduction.

Oil wealth, specifically, undermines democracy because when autocrats have access to oil wealth, they don't need to depend on their citizens very much. (Indeed, many oil-rich autocratic countries just allow other countries to come in and drill it, keeping local labor entirely out of the loop.)

Resource-cursed autocracies tend to democratize when the oil wealth runs out and they need to rely on the people's productivity to deliver wealth to cronies. When autocrats are forced to allow people to educate themselves and communicate with one another, democracy ensues.

It can work the other way, too. In every democracy, there's a group of folks asking themselves a question: is now the time to try a coup, to replace democracy with an autocracy? As the value of capital increases and the value of human labor decreases, the advantages of staging a coup become more and more enticing.

For years we've thought of human labor as the "ultimate resource." But it turns out that human labor isn't the ultimate resource. Robot labor that's just as good if not better than human labor is a resource beyond any we've ever seen.

But that means that we're discovering/inventing the ultimate resource curse.

We might use automation to fund universal basic income, or a class of elites could use it to undermine "unnecessary" citizens (the "unnecessariat"), establishing a corporate fascism.

When the government depends on human productivity for our tax base, the government needs to keep us all well-educated and healthy. But soon, government won't depend on human labor.

"Is now the time?" they're asking. And, increasingly, the answer is "yes."

The Singularity

The Singularity is a theoretical event where computer artificial intelligence escapes control and Everything Changes. If an AI figures out how to improve its intelligence, the Singularity will happen rather quickly because computers can do a gazillion mathematical calculations in a fraction of a second. It took mankind about 300,000 years to go from the Middle Paleolithic to present-day knowledge, a crude AI could do that much in about four months.

Charles Stross calls it "The Rapture Of The Nerds", because Singularity fans talk about it in terms one generally only hears among eschatologists. Human history will come to an end, beer will be five cents a pint, everybody will have their brain uploaded into the paradise of a hyper interstellar internet, there to live out a blissful immortality while being all watched over by machines of loving grace. And it is going to happen Real Soon Now.

Others (who have watched the Terminator movies) see a future where an artificial intelligence is created, who immediately decides to exterminate the human race via killer robots.

But both predictions are meaningless, since the point of a singularity is it signals where the math breaks down and future prediction is impossible. Sort of like a historical event horizon. Any prediction you make is revealing more about the hopes and fears lurking inside your personality than it is the actual details of the post-Singularity future.

Anyway the label was first mentioned by Stanislaw Ulam in 1958. But it was popularized by Vernor Vinge to the point where pretty much every science fiction author has at least heard the term. Of course there have been a few science fiction stories written about it.

Vinge is of the opinion that the Singularity will strike the instant that some entity appears that is "Superintelligent." It will then work its will, and the human history will vanish into the unpredictable event horizon of the Singularity. Vinge figures this can happen four different ways:

  • A computer may be developed that is both awake and superhumanly intelligent. This might be from some human genius who builds a very smart machine, or by a human who makes a computer capable of such recursive self-improvement that when the human's back is turned the computer undergoes an intelligence explosion, bootstrapping itself into superintellence.

  • A large computer network may "wake up" as a superintelligent entity. Arthur C. Clarke used this in his 1965 story Dial "F" for Frankenstein when the telephone system wakes up. Nowadays the first thing that springs to mind is the internet, which is a disturbing thought. Blasted thing will have 4chan for a dark subconscious.

  • A computer/brain interface may become so intimate that the users will be for all intents and purposes superintelligent.

  • There may be no computers involved at all. Biological science might be able to grant human beings the power of superintelligence.

Naturally once you have a superintelligent being, there is nothing stopping it from creating a super-superintelligent being, and so on.


"Transcendence," Admiral Barry said. "That seems to be an ongoing theme with these creatures."

"Yes, sir. In particular, we think they're talking about the GRIN Singularity."

Since the twentieth century—some would say earlier—human technology had been advancing in exponential leaps, each advance in science spawning new advances in dizzying and fast-accelerating profusion. It wasn't just the technology that had been growing; it was the pace of that growth, the ever-increasing speed of technological innovation and development. Just five centuries ago, humans had made their first successful heavier-than-air flight in a fabric-and-spruce glider powered by a gasoline engine, a voyage lasting all of twelve seconds and covering 120 feet. Thirty years later, aviator Wiley Post flew a Lockheed Vega monoplane around the world, the first man to do so solo, making eleven stops along the way and logging the total time in the air at 115 hours, 36 minutes.

And thirty years after that, humans were riding rockets into low Earth orbit, circling the globe in ninety minutes, and were just six short years from walking on the Moon.

In the late twentieth century, a science fiction writer, math professor, and computer scientist named Vernor Vinge had pointed out that if the rate of technological change was graphed against time, the slope representing that change was fast approaching a vertical line—what he called the "technological singularity" in an essay written in 1993. Human life and civilization, he'd pointed out, would very quickly become unrecognizable, assuming that humans weren't replaced entirely by their technological offspring within the next few decades.

Other writers of the era had pointed out that there were four principle drivers of this exponential increase in high-tech wizardry: genetics, robotics, infotechnology, and nanotechnology, hence the acronym "GRIN." The GRIN Singularity became a catchphrase for the next four centuries of human technological progress.

"GRIN wasn't quite the apotheosis people thought it would be," Noranaga pointed out.

"That's kind of a strange statement coming from a guy who breathes with gills and can outswim a dolphin," Barry pointed out.

"He's right, though," Mendelson said. "The way the pace of things was picking up in the twenty-first century, it looked like humans would become super-sentient god-machines before the twenty-second. The surprise is that we didn't."

"Well," Koenig said, "we did kind of get distracted along the way."

As Mendelson had pointed out, the only surprising thing about any of this was that the rate of increase hadn't already rocketed into the singularity sometime in the late twenty-first century. Various factors were to blame— two nasty wars with the Chinese Hegemony culminating in an asteroid strike in the Atlantic, the ongoing struggle with Earth's fast-changing climate and the loss of most of Earth's coastal cities, the collapse of the global currency and the subsequent World Depression. The Blood Death of the early twenty-second century had brought about startling advances in nanomedicine.. .but it had also killed one and a half billion people and brought about a major collapse of civilization in Southern Asia and Africa.

Those challenges and others had helped spur technological advances, certainly, but at the same time they'd slowed social change, redirected human creativity and innovation into less productive avenues, and siphoned off trillions of creds that otherwise would have financed both technological and social change. Human technological advance, it seemed, came more in fits and starts than in sweeping asymptotic curves.

(ed note: science fiction authors should note that Mr. Keith did not want to write about a post-Singularity human society, so he offered reasons why the Singularity had not happened. Yet.)

Revolt of the AIs

This is the nightmare Skynet Scenario, with hordes of Terminator robots hunting down humans with phased plasma rifles in the 40 watt range, crunching human skulls underfoot. Once the rogue artificial intelligence is created, it decided to exterminate the human race for reasons that make sense to its cybernetic mind.


Yet if you’ve been paying attention to the news for the past several years, you’ve almost certainly seen articles from a wide range of news outlets about the looming danger of artificial general intelligence, or “AGI.” For example, Stephen Hawking has repeatedly expressed that “the development of full artificial intelligence could spell the end of the human race,” and Elon Musk — of Tesla and SpaceX fame — has described the creation of superintelligence as “summoning the demon.” Furthermore, the Oxford philosopher and director of the Future of Humanity Institute, Nick Bostrom, published a New York Times best-selling book in 2014 called Superintelligence, in which he suggests that the “default outcome” of building a superintelligent machine will be “doom.”

What’s with all this fear-mongering? Should we really be worried about a takeover by killer computers hell-bent on the total destruction of Homo sapiens? The first thing to recognize is that a Terminator-style war between humanoid robots is not what the experts are anxious about. Rather, the scenarios that keep these individuals awake at night are far more catastrophic. This may be difficult to believe but, as I’ve written elsewhere, sometimes truth is stranger than science fiction. Indeed, given that the issue of AGI isn’t going anywhere anytime soon, it’s increasingly important for the public to understand exactly why the experts are nervous about superintelligent machines. As the Future of Life Institute recently pointed out, there’s a lot of bad journalism about AGI out there. This is a chance to correct the record.

Toward this goal, step one is to realize is that your brain is an information-processing device. In fact, many philosophers talk about the brain as the hardware — or rather, the “wetware” — of the mind, and the mind as the software of the brain. Directly behind your eyes is a high-powered computer that weighs about three pounds and has roughly the same consistency as Jell-o. It’s also the most complex object in the known universe. Nonetheless, the rate at which it’s able to process information is much, much slower than the information-processing speed of an actual computer. The reason is that computers process information by propagating electrical potentials, and electrical potentials move at the speed of light, whereas the fastest signals in your brain travel at around 100 miles per second. Fast, to be sure, but not nearly as fast as light.

Consequently, an AGI could think about the world at speeds many orders of magnitude faster than our brains can. From the AGI’s point of view, the outside world — including people — would move so slowly that everything would appear almost frozen. As the theorist Eliezer Yudkowsky calculates, for a computer running a million times faster than our puny brains, “a subjective year of thinking would be accomplished for every 31 physical seconds in the outside world, and a millennium would fly by in eight-and-a-half hours.”

Already, then, an AGI would have a huge advantage. Imagine yourself in a competition against a machine that has a whole year to work through a cognitive puzzle for every 31 seconds that you spend trying to think up a solution. The mental advantage of the AGI would be truly profound. Even a large team of humans working together would be no match for a single AGI with so much time on its hands. Now imagine that we’re not in a puzzle-solving competition with an AGI but a life-and-death situation in which the AGI wants to destroy humanity. While we struggle to come up with strategies for keeping it contained, it would have ample time to devise a diabolical scheme to exploit any technology within electronic reach for the purpose of destroying humanity.

But a diabolical AGI isn’t — once again — what many experts are actually worried about. This is a crucial point that the Harvard psychologist Steven Pinker misses in a comment about AGI for the website To quote Pinker at length:

“The other problem with AGI dystopias is that they project a parochial alpha-male psychology onto the concept of intelligence. Even if we did have superhumanly intelligent robots, why would they want to depose their masters, massacre bystanders, or take over the world? Intelligence is the ability to deploy novel means to attain a goal, but the goals are extraneous to the intelligence itself: being smart is not the same as wanting something. History does turn up the occasional megalomaniacal despot or psychopathic serial killer, but these are products of a history of natural selection shaping testosterone-sensitive circuits in a certain species of primate, not an inevitable feature of intelligent systems.” Pinker then concludes with, “It’s telling that many of our techno-prophets can’t entertain the possibility that artificial intelligence will naturally develop along female lines: fully capable of solving problems, but with no burning desire to annihilate innocents or dominate the civilization.”

Unfortunately, such criticism misunderstands the danger. While it’s conceptually possible that an AGI really does have malevolent goals — for example, someone could intentionally design an AGI to be malicious — the more likely scenario is one in which the AGI kills us because doing so happens to be useful. By analogy, when a developer wants to build a house, does he or she consider the plants, insects, and other critters that happen to live on the plot of land? No. Their death is merely incidental to a goal that has nothing to do with them. Or consider the opening scenes of The Hitchhiker’s Guide to the Galaxy, in which “bureaucratic” aliens schedule Earth for demolition to make way for a “hyperspatial express route” — basically, a highway. In this case, the aliens aren’t compelled to destroy us out of hatred. We just happen to be in the way.

The point is that what most theorists are worried about is an AGI whose values — or final goals — don’t fully align with ours. This may not sound too bad, but a bit of reflection shows that if an AGI’s values fail to align with ours in even the slightest ways, the outcome could very well be, as Bostrom argues, doom. Consider the case of an AGI — thinking at the speed of light, let’s not forget — that is asked to use its superior intelligence for the purpose of making humanity happy. So what does it do? Well, it destroys humanity, because people can’t be sad if they don’t exist. Start over. You tell it to make humanity happy, but without killing us. So it notices that humans laugh when we’re happy, and hooks up a bunch of electrodes to our faces and diaphragm that make us involuntarily convulse as if we’re laughing. The result is a strange form of hell. Start over, again. You tell it to make us happy without killing us or forcing our muscles to contract. So it implants neural electrodes into the pleasure centers of everyone’s brains, resulting in a global population in such euphoric trances that people can no longer engage in the activities that give life meaning. Start over — once more. This process can go on for hours. At some point it becomes painfully obvious that getting an AGI’s goals to align with ours is going to be a very, very tricky task.

Another famous example that captures this point involves a superintelligence whose sole mission is to manufacture paperclips. This sounds pretty benign, right? How could a “paperclip maximizer” pose an existential threat to humanity? Well, if the goal is to make as many paperclips as possible, then the AGI will need resources to do this. And what are paperclips composed of? Atoms — the very same physical stuff out of which your body is composed. Thus, for the AGI, humanity is nothing more than a vast reservoir of easily accessible atoms, atoms, atoms. As Yudkowsky eloquently puts it, “The [AGI] does not hate you, nor does it love you, but you are made out of atoms which it can use for something else.” And just like that, the flesh and bones of human beings are converted into bendable metal for holding short stacks of paper.

At this point, one might think the following, “Wait a second, we’re talking about superintelligence, right? How could a truly superintelligent machine be fixated on something so dumb as creating as many paperclips as possible?” Well, just look around at humanity. By every measure, we are by far the most intelligent creatures on our planetary spaceship. Yet our species is obsessed with goals and values that are, when one takes a step back and peers at the world with “new eyes,” incredibly idiotic, perplexing, harmful, foolish, self-destructive, other-destructive, and just plain weird.

For example, some people care so much about money that they’re willing to ruin friendships, destroy lives and even commit murder or start wars to acquire it. Others are so obsessed with obeying the commandments of ancient “holy texts” that they’re willing to blow themselves up in a market full of non-combatants. Or consider a less explicit goal: sex. Like all animals, humans have an impulse to copulate, and this impulse causes us to behave in certain ways — in some cases, to risk monetary losses and personal embarrassment. The appetite for sex is just there, pushing us toward certain behaviors, and there’s little we can do about the urge itself.

The point is that there’s no strong connection between how intelligent a being is and what its final goals are. As Pinker correctly notes above, intelligence is nothing more than a measure of one’s ability to achieve a particular aim, whatever it happens to be. It follows that any level of intelligence — including superintelligence — can be combined with just about any set of final goals — including goals that strike us as, well, stupid. A superintelligent machine could be no less infatuated with obeying Allah’s divine will or conquering countries for oil as some humans are.

So far, we’ve discussed the thought-speed of machines, the importance of making sure their values align with ours, and the weak connection between intelligence and goals. These considerations alone warrant genuine concern about AGI. But we haven’t yet mentioned the clincher that makes AGI an utterly unique problem unlike anything humanity has ever encountered. To understand this crucial point, consider how the airplane was invented. The first people to keep a powered aircraft airborne were the Wright brothers. On the windy beaches of North Carolina, they managed to stay off the ground for a total of 12 seconds. This was a marvelous achievement, but the aircraft was hardly adequate for transporting goods or people from one location to another. So, they improved its design, as did a long lineage of subsequent inventors. Airplanes were built with one, two, or three wings, composed of different materials, and eventually the propeller was replaced by the jet engine. One particular design — the Concorde — could even fly faster than the speed of sound, traversing the Atlantic from New York to London in less than 3.5 hours.

The crucial idea here is that the airplane underwent many iterations of innovation. Problems that arose in previous designs were improved upon, leading to increasingly safe and reliable aircraft. But this is not the situation we’re likely to be in with AGI. Rather, we’re likely to have one, and only one, chance to get all the problems mentioned above exactly right. Why? Because intelligence is power. For example, we humans are the dominant species on the planet not because of our long claws, sharp teeth and bulky musculatures. The key difference between Homo sapiens and the rest of the Animal Kingdom concerns our oversized brains, which enable us to manipulate and rearrange the world in incredible ways. It follows that if an AGI were to exceed our level of intelligence, it could potentially dominate not only the biosphere, but humanity as well.

Even more, since creating intelligent machines is an intellectual task, an AGI could attempt to modify its own code, a possibility known as “recursive self-improvement.” The result could be an exponential intelligence explosion that, before one has a chance to say “What the hell is happening?,” yields a super-super-superintelligent AGI, or a being that towers over us to the extent that we tower over the lowly cockroach. Whoever creates the first superintelligent computer — whether it’s Google, the U.S. government, the Chinese government, the North Korean government, or a lone hacker in her or his garage — they’ll have to get everything just right the first time. There probably won’t be opportunities for later iterations of innovation to fix flaws in the original design, if there are any. When it comes to AGI, the stakes are high.

It’s increasingly important for the public to understand the nature of thinking machines and why some experts are so worried about them. Without a grasp of these issues, claims like “A paperclip maximizer could destroy humanity!” will sound as apocalyptically absurd as “The Rapture is near! Save your soul while you still can!” Consequently, organizations dedicated to studying AGI safety could get defunded or shut down, and the topic of AGI could become the target of misguided mockery. The fact is that if we manage to create a “friendly” AGI, the benefits to humanity could be vast. But if we fail to get things right on the first go around, the naked ape could very well end up as a huge pile of paperclips.

     Really smart A.I. wouldn't directly attack humans.
     It would pit them against each other.

     Has it already started?

From a tweet by Christian Payne (2016)

The global financial system is a paperclip maximizer-type AI, only instead of paperclips it turns you into debt.

What happens when Singularitarianism meets Neurotheology meets CRISPR meets germ-line genetic manipulation?

Our paperclip maximizer AI overlords get human slaves genetically programmed to worship them. The end.

From a tweet by Charles Stross (2016)

Atomic Rockets notices

This week's featured addition is Pulsed Solid Core Nuclear Thermal Rocket

This week's featured addition is Convair Electria spacecraft

This week's featured addition is the Lewis Research Center Mars Mission

Atomic Rockets

Support Atomic Rockets

Support Atomic Rockets on Patreon