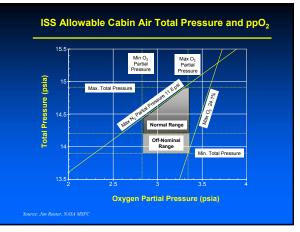

Life Support Concepts for Space Travel

Raymond M. Wheeler Kennedy Space Center, FL

Human Life Support Requirements:

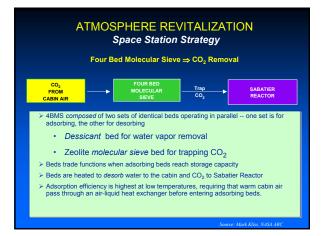


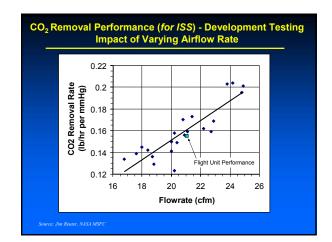
Life Support Approaches for Space

	Physico-Chemical (PC)	<u>Biological</u>
Food	Stowage and Resupply	Photosynthesis
Oxygen	Electrolysis Chlorate Candles	Photosynthesis
CO ₂ Removal	LiOH Regenerable Amines Molecular Sieves	Photosynthesis
CO ₂ Reduction	Bosch / Sabatier CO ₂ Electrolysis	Photosynthesis
Liquid Wastes	Multi-Filtration Evaporation Vap. Compr. Distillation Vap. Phase Cat. NH ₂ Ren	Microbiological Transpiration noval
Solid Wastes	Incineration Supercritical Oxidation Lyophilization	Microbiological

PHYSICO-CHEMICAL (PC) TECHNOLOGIES --**CLOSING THE AIR LOOP**

O ₂ GENERATION			
> Static Feed Water Electrolysis			ITALIC = International Space Station
> Solid Polymer Electrolysis - Liquid Anode Fe		eed	
≻ CO ₂ Electrolysis			CO₂ REMOVAL
> Water Vapor Electrolysis			Four Bed Molecular Sieve
> Bioregeneration			
		^ ٦	Solid Solid Amine Water Desorbed
	CO ₂ REDUCTION	>	Electrochemical Depolarized Concentrator
	Sabatier Reactor	>	Air Polarized Concentrator
	>Bosch Reactor	>	Two-Bed Molecular Sieve
	Advanced Carbon Reactor	>	Lithium Hydroxide (LiOH)
	≻CO ₂ Electrolysis	>	Bioregeneration
	> Bioregeneration		


ISS Total Pressure and PPO₂ Control


Total Pressure Control Plan:

- Intent is to utilize Shuttle to raise ISS pressure as high as practical within allowable range prior to undocking.
- Decay to lower end of control band over time, then utilize on-orbit gas storage to maintain pressure.

Oxygen Partial Pressure Control Plan:

- > Intent is to also utilize Shuttle to raise ppO₂ as high as practical prior to undocking.
 - Normal O₂ introduction is via water electrolysis O₂
- Normal O2 introduction of O2 through day to achieve fairly stable O2 cabin concentrations.
- Strict adherence to RRD ppO₂ limits would restrict operational flexibility.

Closed Hatch ECLS Test CO₂ Removal Performance 5.0 4.5 6 person crew load 4.0 ***** ppCO2 (mmHg) 3.5 4 person crew load 3.0 Mardan + 3 person crew load 2.5 2.0 1. W. 1.5 1.0 0.5 0.0 GMT

PC TECHNOLOGIES CLOSING THE WATER LOOP LEADING OPTIONS

WATER RECOVERY MANAGEMENT Space Station Strategy

 $\textbf{MULTIFILTRATION} \Rightarrow \textbf{(SABATIER)} \Rightarrow \textbf{POTABLE}$

MULTIFILTRATION (MF)

- POTABLE WATER is obtained through MULTIFILTRATION of condensate from the *Temperature and Humidity Control System*, and eventually also from water formed in the *Sabatier Reactor* during the CO₂ reduction process.
- MF consists of a particulate filter upstream of six unibeds in series. Each unibed is composed of an adsorption bed (activated carbon) and ion exchange resin bed.
 - Particulates are removed by filtration
 - Suspended organics are removed by adsorption beds
 - Inorganic salts are removed by ion exchange resin beds

Source: Mark Kliss, NASA ARC

WATER RECOVERY MANAGEMENT Space Station Strategy (Evolutionary)

 $\mathsf{MULTIFILTRATION} \Rightarrow \mathsf{(SABATIER)} \Rightarrow \mathsf{POTABLE}$

SABATIER REACTOR

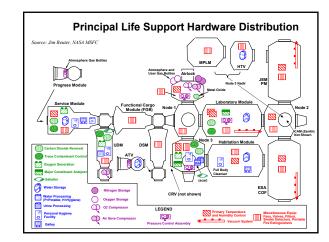
$CO_2 + 4H_2 = 2H_2O + CH_4 + heat$

- \geq CO₂ is reacted with H₂ at high temperature (180-530 °C) in the presence of a ruthenium catalyst on a granular substrate.
- > This produces water and methane for the potable supply.
- A single pass through the Sabatier reactor reduces greater than 98% of the input CO₂.
- CO2 conversion is incomplete (resupply penalty) and methane will likely be vented (interferes with astronomical instrumentation observations).

Source: Mark Kliss, NASA ARC

ISS Atmospheric Contaminant Control Methods

Passive Control

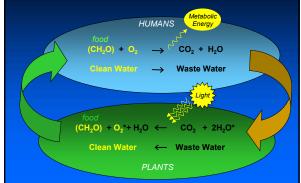

- Materials selection and control process
- Payload materials and processes screening
- Hardware design

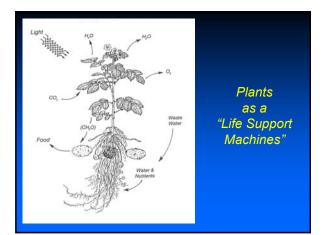
Active Control

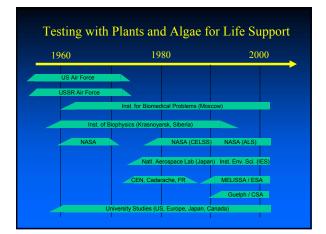
- Mir: Expendable and regenerable charcoal for volatile trace gas control and ambient temperature catalyst for CO control
- ISS U.S. Segment: Expendable charcoal for volatile trace gas control and <u>high temperature</u> catalytic oxidation for CO and methane control
- ISS Russian Segment: Same system used onboard Mir

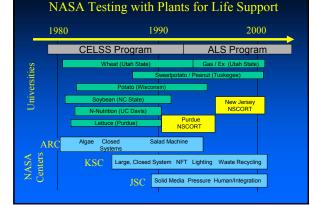
Incidental Control

- > Overboard leakage
- Absorption by humidity condensate
- > Human respiration
- Dilution via atmosphere replenishment
- Carbon dioxide removal assembly




Constraints ("Economics") of Life Support in Space:


- Energy Requirements
- System Mass
- System Volume
- Crew Time
- System Reliability


These apply for all Life Support Technologies

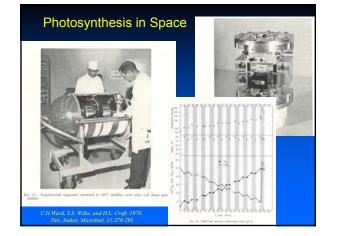
Plants and Life Support: Some Background

Joseph Priestley (1772) *

- "...a sprig of mint in a glass jar continued growing for some months, I found that the air would neither extinguish a candle, nor was it at all inconvenient to a mouse"
- "plants thrive particularly well in air made obnoxious by the exhalations of animals (and humans)"
- * Abstracted from E.I. Rabinowitch. 1945. Photosynthesis and Related Processes. Interscience Publ. Inc. NY.

Early Bioregenerative Studies Focused on Algae and Cyanobacteria (1950s and 1960s)

- *Chlorella pyrenoidosa* TX71105 (thermotolerant 39°C)
- Other species of Chlorella, Anacystis, Synechocystis, Scenedesmus, Synechococcus, Spirulina were studied
- Development of culture systems (chemostats, turbidostats)
- Studies with animals (e.g., mice, monkeys) and humans
- Interest in Assimilation and Respiration Quotients (AQ and RQ)
- "...a general misconception in the scientific community is that success of the bioregenerative approach depends on development of a biologically and chemically closed ecology with complete material balance. While this may be the ultimate goal, few consider it possible if indeed necessary" (Miller and Ward, 1966)


Observations from Algae Studies:

Positives

- high photosynthetic efficiency
- good volume efficiency
- good energy efficiency--minimum wastage of light

Negatives

- difficulties with food processing / palatability
- long-term, sustained production challenges
- gas / liquid phase issues for μ -gravity
- no transpiration advantage for water purification
- not convenient for point source lamps

Bioregenerative Life Support for Space:

Reviews of Work in 1950s and 1960s:

- Eley, J.H. and J. Myers. 1963. A study of a photosynthetic gas exchanger. A quantitative repetition of the Priestley Experiment. Texas J. Sci. 16:296-333.
- Miller, R.L. and C.H. Ward. 1966. Algal bioregenerative systems. In K. Kammermeyer (*ed.*) Atmosphere in Space Cabins and Closed Environments. Appleton-Century-Croft, NY.
- Taub, F.B. 1974. Closed ecological systems. *In*: R.F. Johnston, P.W. Frank, and C.D. Michener (*eds.*) Annual review of Ecology and Systematics. 5; 139-160.