ROCKET EQUATIONS
m       

= meter

kg      

= kilogram

sqrt[x] 
= square root of x
g0       

= acceleration due to gravity at Earth’s surface 

(9.81 m/sec2)

ln[x]      
= Log(e), natural logarithm of x
G 

= 6.67206e—11 Nm2/kg2
c

= 299792458 m/sec

 

= 3.141592654

Va 

= average velocity (m/sec)

V  

= change in velocity (m/sec)

Vi

= initial velocity (m/sec)

Vf

= final velocity (m/sec)

S  

= change in distance (m)

T  

= time (seconds)

A  

= acceleration (m/sec2)

Ai

= "instantaneous" acceleration (m/sec2)

ENGINE PARAMETERS

F   

= Thrust, force (newtons or kg m/sec)

FA   

= Thrust per unit area (newton/m2)

Fsp   

= Specific Thrust (newton/kw)

Vch

= Characteristic Velocity

T/W

= Thrust to Weight ratio

Isp 

= Specific Impulse (seconds)

Mdot  
= Propellant mass flow (kg/sec) (sometimes: dm/dt)

ve  

= Velocity of exhaust (m/sec)

MPS 

= Mass propulsion system (power plant+thrust system) (kg)

dMp 

= Mass of propellant burnt in current burn (kg)

MPP 

= Total mass of propellant carried (kg)



= Specific Power = Pw / Mps (kW/kg)

Vch

= Characteristic Velocity



= percentage of propellant mass converted into energy

VEHICLE PARAMETERS

MPL

= Mass of ship's payload (kg)

MST

= Ship's structural mass (kg)

M

= Ship total mass = MPP + MPL + MPS + MST (kg)

Me

= Ship's mass empty (i.e., all propellant burnt)  (kg)

   

= Mt — Mp

Mc

= Ship's "current" mass (at this moment in time) (kg)

Mbs

= Ship's mass at start of current burn (kg)

      

{At start of mission = Mt.

Later it is Mt — (sum of all DMp's of all burns)}

Mbe

= Ship's mass at end of current burn (kg)



= Mst / Mp

R

= Ship's mass ratio = (Mp + Me) / Me
V

= Ship's total velocity change capability (m/sec)

 dTm

= Maximum duration of burn (seconds)



= relativistic factor

MISSION PARAMETERS

deltaVb 
= Velocity change of current burn (m/sec)

dT

= Duration of current burn (seconds)

EM

= Mission energy increment (joules)

EV

= Vehicle energy increment (joules)
EPS

= Propulsion-system energy increment (joules)
* WARNING * The below equations assume a constant acceleration, which is not  true for a ship expending mass (for instance,  propellant). Ai = F/Mc so as the ship's mass goes down, the acceleration goes up.

============================================

When you have two out of three of average velocity (Va), change in distance (S) or time (T)

Va = S / T

S = Va  T

T = S / Va

============================================

When you have two out of three of acceleration (A), change in velocity (V) or time (T)

A = V / T

V = A  T

T = V / A

============================================

When you have two out of three of change in distance (S), acceleration (A), or time (T) plus Initial Velocity (Vi)   Note: if deaccelerating, acceleration A is negative
S = (Vi  T) + ((A  (T2)) / 2)

A = (S — (Vi  T)) / ((T2) / 2)

T =  (sqrt[(Vi2) + (2  A  S)] — Vi) / A

If Vi = 0 then

S = (A  (T2)) / 2

A = (2  S) / (T2)

T = sqrt[(2  S) / A]
============================================

When you have two out of three of change in distance (S), acceleration (A), or final velocity (Vf) plus Initial Velocity (Vi)   Note: if Vf < Vi, then A will be negative (deacceleration)

S = (Vf2 — Vi2) / (2  A)

A = (Vf2 — Vi2) / (2  S)

Vf = sqrt[Vi2 + (2  A  S)]
If Vi = 0 then

S = (Vf2) / (2  A)

A = (Vf2) / (2  A)

Vf = sqrt[2  A  S]
============================================

If the ship constantly accelerates to the midpoint, then deaccelerates to arrive with zero velocity at the  destination:

T = 2 * sqrt[S / A]
S = (A  (T2)) / 4

A = (4  S) / (T2)

============================================

THRUST (Newtons or kg mt/sec)

F 
= Mbs  A

        
= Mdot  ve
        
= Mdot  g0  Isp

= (dMp  ve) / dT

If the particles of exhaust are being ejected at relativistic velocites:

F
= MdotRest   ve / sqrt( 1 – ve2 / c2)

If the exhaust is photons:

F
= (1000 * Pe ) / c
============================================

THRUST POWER (kW)

Pw
= (Mdot  (ve 2)) / 2

Pw
= (dMp  (ve2)) / (2  dT)

============================================

SPECIFIC IMPULSE (seconds)

Isp 
= ve / g0
        
= F / (g0  Mdot)

============================================

PROPELLANT MASS FLOW (kg/sec)

Mdot
= dMp / dT

        
= F / (g0  Isp)

        
= F / ve
============================================

VELOCITY OF EXHAUST (m/sec)

ve
= g0  Isp
        
= F / Mdot

ve /c
= sqrt[  (2—)]

ve /c
= exhaust velocity in fractions of the velocity of light
============================================

MASS OF PROPELLANT BURNT IN CURRENT BURN (kg)

dMp
= Mdot  dT

        
= (F  dT) / (g0  Isp)

        
= (F  dT) / ve
============================================

SPECIFIC POWER (kW/kg)


= Pw / Mps

============================================

CHARACTERISTIC VELOCITY

Vch
= sqrt[ 2    dT ]

============================================

SHIP'S TOTAL MASS (kg)

Mt
= Mp + Mpl + Mps + Ms

============================================

SHIP'S MASS EMPTY (all propellant burnt) (kg)

Me
= Mt — Mp

============================================

SHIP'S MASS AT END OF BURN (kg)

Mbe
= Mbs — Mbp

============================================

SHIP'S MASS RATIO (dimensionless number)

R = (Mp + Me) / Me
============================================

SHIP'S TOTAL VELOCITY CHANGE CAPABILITY (m/sec)

V
= ve  ln[R]
        
= g0  Isp  ln[R]
relativistic rocket formula

V /c = (R ^[(2 ve) /c] —1) / (^[(2 ve) /c]+1)
V /c = (R ^[2(sqrt[(2—)])] —1) / (^[2(sqrt[(2—)])]+1)

V /c = vehicle final velocity expressed as a fraction of the velocity of light

============================================

MAXIMUM DURATION OF BURN (seconds)

dTm
= Mp / Mdot

============================================

VELOCITY CHANGE OF CURRENT BURN (m/sec)

deltaVb = ve  ln[Mbs / Mbe]
============================================

ACCELERATION (m/sec2)

A 
= F / Mc

        
= (Mdot  ve) / Mc

        
= (Mdot  g0  Isp) / Mc

Random sample of ship propulsion specifications

Some solid fuel rockets have R = 20 to 60.

Liquid fuel chemical rockets have a maximum R of 12.

For a multi—stage rocket, the mass ratio is the

product of each stage's mass ratio.

A primitive value for  = 0.1 kW/kg.

In the near future  will equal 0.3 kW/kg.

Solar power arrays = 20 to 100 kg/kW

RTGs = 200 kg/kW

uranium reactor = 0.5 kg/kW
CHEMICAL ROCKET

Propellant





Isp
Hydrogen—Fluorine (F2/H2) ideal

528
Hydrogen—Oxygen (O2/H2)  space shuttle
460

Hydrogen—Oxygen (O2/H2)  ideal

528
 = 1.5e—10

(O3/H2)  ideal





607

(F2/Li—H2) 





703

(O2/Be—H2) 





705

Metallic Hydrogen




1700

Free Radicals (H+H)H2



2,112

Metastable Atoms (e.g. Helium)

3,150

SATURN V FIRST STAGE

Isp = 430 seconds

F = 3.41e7 newtons

SPACE SHUTTLE

Isp = 455 seconds

F = 2.944e7 newtons

Mt = 1.99e6 kg

GENERALIZED 02/H2 CHEMICAL ROCKET

ve = 4,500 m/sec

F = 1.669e6 newtons

METASTABLE CHEMICAL ROCKET

Spin polarizied helium.

ve = 43,000 m/sec

F = 64,000 newtons

Metastable electronically-excited triplet helium

Isp = 3150 seconds
Solid He IV-A
Isp = 2200 seconds
SOLAR THERMAL ROCKET (“Solar Moth”)

175 meter diameter aluminum coated reflector concentrates solar radiation onto a window chamber hoop boiler, heating and expanding the propellant through a regeneratively-cooled hoop nozzle. The concentrating mirror is one half of a giant inflatable balloon, the other half is transparent.

ve = 9000 m/sec

F = 4000 newtons

PHOTON SAIL

F = 200 newtons at 1 AU

LASER SAIL

F = 300 newtons

LASER THERMAL ROCKET

ve = 40,000 m/sec

F = 13,000 newtons

SOLID CORE FISSION (NERVA/DUMBO "Atomic Rocket")

NUCLEAR THERMAL ROCKET
Limited by the temperature limits of their materials of construction.
NERVA had extra tanks containing contingency hydrogen for an emergency core shut-down and cool-down in the event that the main hydrogen tanks or pumps failed.
Isp = 850 to 1000 seconds

F = 1e5 to ??? newtons

Erik Max Francis: Theoretical maximum ve =15,000,000 m/s

Rocket Flight: ve = 8800 m/sec, F = 49,000 newtons

HYBRID NUCLEAR-THERMAL/ NUCLEAR-ELECTRIC
In this concept, a nuclear-thermal rocket (NTR) (e.g., solid-core NERVA) is used for high thrust-to-weight (T/W) maneuvers in a high gravity field to minimize gravity losses and trip time. Then, outside of the deep gravity well of a planet or moon, the system switches over to a nuclear-electric propulsion (NEP) mode for low-T/W, high-Isp interplanetary transfer. Electric power for the NEP system is obtained by operating the nuclear-thermal rocket reactor at a low thermal power  level (so that no NTR H2 propellant is required for reactor thermal control) with a closed-loop fluid loop (e.g., heat-pipes or pumped fluid loop) used to extract heat from the reactor. 

NERVA mode:

Isp = 800 to 1000 seconds

T/W > 0.1
ION mode:

Isp = 2000 to 5000 seconds

T/W > 10e-3

LOX-AUGMENTED NUCLEAR THERMAL ROCKET (LANTR)
This concept involves the use of a "conventional" hydrogen (H2) propellant NTR with lunar-produced oxygen (O2) injected into the nozzle. The injected O2 acts like an "afterburner" and operates in a "reverse scramjet" mode. This makes it possible to augment (and vary) the thrust (from what would otherwise be a relatively small NTR engine) at the expense of reduced Isp NERVA mode:
Isp = 940 seconds

F = 67,000 newtons

LOX augment mode:

Isp = 647 seconds

F = 184,000 newtons

PARTICLE BED NUCLEAR ROCKET
NUCLEAR THERMAL ROCKET
In the particle-bed (fluidized-bed, dust-bed, or rotating-bed) reactor, the nuclear fuel is in the form of a particulate bed through which the working fluid is pumped. This permits operation at a higher temperature  than the solid-core reactor by reducing the fuel strength requirements . The core of the reactor is rotated (approximately 3000 rpm) about its longitudinal axis such that the fuel bed is centrifuged against the inner surface of a cylindrical wall through which hydrogen gas is injected. This rotating bed reactor has the advantage that the radioactive particle core can be dumped at the end of an operational cycle and recharged prior to a subsequent burn, thus eliminating the need for decay heat removal, minimizing shielding requirements, and simplifying maintenance and refurbishment operations.

T/W > 1
Isp = 1000 seconds

Pw = 1050 MW
F = 230,000 newtons

MPS= 4.2 metric tons
ORION BOMB PULSE ENGINE ("old Bang—Bang")

original NASA study:

2000 x 0.01 kton nuclear devices
M = 585 metric tons 
Isp = 1840 to 2550 seconds

T/W  4
theoretical:
Isp = 1000 to 5000 seconds, second generation = 1e4 to 2e4

Rocket Flight: ve = 43,000 m/sec Fission, 73,000 m/sec Fusion, F = 2.63e5 newtons Fission, 2.92e5 newtons Fusion

ZUBRIN FISSION SALT WATER ROCKET (NSWR)

At 20% Uranium tetra-bromide solution:
ve = 66,000 m/sec

Isp = 6734 seconds

F = 1.3e7 newtons

Pw = 427 gigawatts

mDot = 197 kg/sec
At 90% Uranium tetra-bromide solution:
ve = 4,700,000 m/sec

MASS DRIVER REACTION ENGINE

ve = 30,000 m/sec

F = 20,000 newtons

COLLOID ELECTROSTATIC ENGINE

ve = 43,000 m/sec

F = 8000 newtons

ARCJET (Electrothermal)

Isp = 800 to 1200 seconds

Rocket Flight: ve = 22,000 m/sec, F = 1000 newtons

MPD (Electromagnetic)

Isp = 2000 to 5000 seconds

J X B ELECTRIC ( “Jay cross Bee Electric”)

ve = 74,000 m/sec

F = 5000 newtons

ION (Electrostatic)

Isp = (1/g)  sqrt[ 2  (q/m)  Va]

q = charge of individual ion

m = mass of individual ion

Va = voltage or potiential difference through which ions are accelerated
Isp = 5e3 to 4e5 seconds

F = 4.6e—4 to 100 newtons (pretty pathetic, eh?)

Rocket Flight: ve = 1.57e5 m/sec, F = 10,000 newtons

John Schilling <schillin@spock.usc.edu>: A typical ion engine operating at a specific impulse of ~2500 seconds, consumes 25 kW of power per newton of thrust.  This assumes 50% overall efficiency; even an unattainable 100% would still leave you with over 10 kW/N.

High molecular weight is a good thing for ion thrusters, which is precisely why people are looking at C60 (buckminsterfullerenes) for the application.  And why contemporary designs use Xenon, despite its cost of ~$2000/kg. 


Low molecular weights are good for thermal rocket, because exhaust velocity is essentially the directed thermal velocity of the gas molecules, the thermal velocity is proportional to the square root of temperature over molecular weight, and there is a finite upper limit to temperature.


With ion thrusters, thermal velocity is irrelevant.  Exhaust velocity comes from electrostatic acceleration and is proportional to the square root of grid voltage over molecular mass.  There is no real upper limit to grid voltage, as a few extra turns on the transformer are cheap and simple enough.


However, you have to ionize the propellant before you can accelerate it, and the ionization energy is pure loss.  This wasted ionization energy has to be payed for each and every particle in the exhaust, so the fewer individual particles you have to deal with, the less waste.  The heavier the particles, the fewer you need for any given mass flow rate.


Also helps if the ionization energy of the particles is low, of course, but there's much more variation in atomic and molecular weight than in first ionization energy.

Frank Crary: The ions will be accelerated out through the grid at a velocity, 

v = sqrt[2  q  V/m]
where q is the charge of the ions, V the voltage applied and m the mass of the ions. This will produce a force

F = m  r  v = r  sqrt[2  q  V  m]

where r is the rate at which particles are ionized and accelerated,

in particles per second. At the same time, the ion beam produces a current : I = q  r 

and a current flowing across a voltage, V, requires input power

P = I  V = 0.5  m  (v2)  r = 0.5  v  F

The last form of that is a fundamental limit on ion drives: For a given power supply (i.e. a given mass of solar panels, nuclear reactor or whatever), you can get a high exhaust velocity or a high thrust, but not both. Unfortunately, both is exactly what you want: The fuel requirements for a given maneuver depend on the exhaust velocity.

MAGNETOPLASMADYNAMIC ENGINE (MPD)

ve = 3.14e5 m/sec

F = 20,000 newtons

VARIABLE SPECIFIC IMPULSE  (VASIMR)

Pw = 10 MW

 = 6 kg/kW 

Isp = 3000 - 30,000
F = 1000 - 2000 newtons

Isp = 30,000 m/sec
and 
F = 40 newtons

Isp = 5,000 m/sec

and 
F = 250 newtons

Isp = 2,500 m/sec

and 
F =600 newtons

LIQUID CORE NUCLEAR ROCKET

NUCLEAR THERMAL ROCKET
Instead of using solid particles, it should be possible to use liquid fissionable material in a rotating-drum configuration. The performance of the liquid-core rocket engine is potentially superior to that of the solid-core or particle-bed engine since the propellant temperature is no longer constrained by the melting temperature of the nuclear fuel. 
Isp = 1300 to 1600 seconds

 = 7.9e—4

T/W > 1
GASEOUS CORE FISSION ROCKET

NUCLEAR THERMAL ROCKET
Short of using antimatter, the highest reactor core temperature in a nuclear rocket can be achieved by using gaseous fissionable material. In the gas-core rocket, radiant energy is transferred from a high-temperature fissioning plasma to a hydrogen propellant. In this concept, the propellant temperature can be significantly higher than the engine structural temperature. Both open-cycle and closed-cycle configurations have been proposed. Radioactive fuel loss and its deleterious effect on performance is a major problem with the open-cycle concept. Fuel loss must be limited to less than one percent of the total flow if the concept is to be competitive. 

Isp = 3570 to 7000 seconds

ve = 3.5e4 to 5e4 m/sec

F = 3.5e6 to 5e6 newtons

Mps = 5e4 to 2.55 kg

MPS= 200 metric tons
 = 7.9e—4

Rocket Flight: ve = 30,000 m/sec, F = 20,000 newtons

CLOSED-CYCLE GAS-CORE (nuclear lightbulb)
NUCLEAR THERMAL ROCKET
Isp = 2080 seconds

Pw = 6000 MW
F = 445,000 newtons

MPS= 56.8 metric tons
T/W  1

small (Space shuttle bay sized)

Isp = 1550 seconds

Pw = 448 MW
F = 44,700 newtons

MPS= 15.1 metric tons
T/W = 0.3

GASEOUS CORE COAXIAL FLOW REACTOR

NUCLEAR THERMAL ROCKET
Isp = 1800 seconds

ve = 17,640 m/sec

F = 1.78e7 newtons

Mps = 1.27e5 kg

 = 7.9e—4

DAEDALUS (INERTIAL CONFINEMENT FUSION)

V = 0.1c

stage one:

F = 7.5e6 newtons
Isp = 1e6

stage two:
Isp = 1e6

F = 6.6e5 newtons
 = 4e—3

VEHICLE FOR INTERPLANETARY SPACE TRANSPORT APPLICATIONS (VISTA) (INERTIAL CONFINEMENT FUSION)

Pw = 30 GW
Isp = 17,000
ve = 166,600 m/sec

HYDROGEN-BORON FUSION

ve = 9.8e5 m/sec

F = 61,000 newtons

BORON FUSION

11B5 + p  3( 4He2 ) + 16Mev


that is, bombard Boron-11 with protons.  A complicated reaction ends with helium and no pesky nuclear particles. 16 million electon volts gives an exhaust velocity of better than 10,000 km/sec, which translates into a theoretical specific impulse of something over a million seconds.


What's the catch?

schillin@spock.usc.edu (John Schilling)

The catch is, you have to arrange for the protons to impact with 300 keV of energy, and even then the reaction cross section is fairly small.  Shoot a 300 keV proton beam through a cloud of boron plasma, and most of the protons will just shoot right through.  300 keV proton beam against solid boron, and most will be stopped by successive collisions without reacting.  Either way, you won't likely get enough energy from the few which fuse to pay for accelerating all the ones which didn't.


Now, a dense p-B plasma at a temperature of 300 keV is another  matter.  With everything bouncing around at about the right energy, sooner or later everything will fuse.  But containing such a dense, hot plasma for any reasonable length of time, is well beyond the current state of the art.  We're still working on 25 keV plasmas for D-T fusion.


If you could make it work with reasonable efficiency, you'd get on the order of ten gigawatt-hours of usable power per kilogram of fuel.

Paul Dietz <paul@interaccess.com>


Unfortuantely, this discussion ignores side reactions:


p + 11B5  12C + 

4He + 11B5  14N + n


The first is quite a bit less likely than the 3( 4He2 )  reaction, but the photon is very energetic and penetrating.  The second reaction there occurs with secondary alpha particles before they are thermalized.

DEUTERIUM-TRITIUM FUSION

ve = 22,000 m/sec

F = 1.08e5 newtons

HELIUM 3 – DEUTERIUM FUSION

ve = 7.84e6 m/sec

F = 49,000 newtons

HYPOTHETICAL FUSION TORCH

Isp = 5e4 to 1e6 seconds

thrust/mass ratio 1e—4 to 1e—5

 = 4e—3

Erik Max Francis: For fusion reactions, the yield is about 6.3e14 J/kg, which 

gives us an maximum exhaust velocity for fusion drives of about 3.6e7 m/s. This is the theoretical maximum.

ANTIPROTON CATALIZED MICROFISSION (ACMF)

INERTIAL CONFINEMENT FISSION
Isp = 13,500 seconds

ve = 132,300 m/sec

F = 100,000 newtons

mDot = 0.76 kg/sec
ANTIPROTON INITIATED MICROFUSION (AIM)

INERTIAL CONFINEMENT FUSION

Isp = 61,000 seconds

ve = 5.98e5 m/sec

F = 55.2 newtons

mDot = 9.22e-5 kg/sec
LIQUID-CORE ANTIPROTON
Isp = 2500 seconds

PLASMA-CORE ANTIPROTON
Isp = 5,000 to 100,000 seconds

BEAM-CORE ANTIPROTON
Isp = 1e8 seconds

F = very low
PION ANNIHILATION (ANTIMATTER)

ve = 7.84e6 m/sec with hydrogen, 9.8e5 m/sec with water

F = 49,000 newtons with hydrogen, 61,000 newtons with water

ANTIMATTER

Isp about 3.06e7 seconds

 = 1.0

Erik Max Francis: Theoretical maximum ve = c

PHOTON DRIVE

Isp about 3.06e7 seconds

Erik Max Francis <max@alcyone.com>

even using an ideal drive (exhaust velocity = c), the mass ratio you'd need to have a deltavee of 0.995 c would be 2.12e4.  That is, you'd need 21,200 times more fuel than payload.

The mometum of a photon is given by 

    p = E/c, 

where E is the energy of the photon, and so the thrust delivered by a stream of them is

    dp/dt = dE/dt/c

or

    F = P/c

where F is the thrust and P is the power.  To get a thrust of 1 N, you need a power of 300 MW.  Yes, three hundred megawatts!

IBS (Interplanetary Boost Ship) Agamemnon (from Jerry Pournelle's "Tinker")

Fusion powered ion drive

Mt = 1e8 kg

Mp = 7.2e7 kg

Mpl = 2e7 kg

 = 2.57

ve = 2e5 m/sec

Isp = 20,408 seconds

V = 2.6e5 m/sec

F = 5.6e6 newtons

Mdot = 28 kg/sec

Typical mission: Earth—Pallas, with Pallas at 4 AU from Earth.

Boosts at 1/100g for about 15 days to 140km/sec.

Coast for 40 days. Deaccelerate for another 15 days.

OTHER USEFUL EQUATIONS
CIRCULAR ORBITAL VELOCITY

Vc = sqrt( (GM*)/Ro)
Vc = circular orbital velocity

G = universal gravitational constant = 6.67206e—11 Nm2/kg2

M*= mass of the star (sun = 1.99e30 kg)

Ro= distance from center of the star

STELLAR ESCAPE VELOCITY
Ve = Vc  sqrt(2)
HYPERBOLIC EXCESS VELOCITY

V = V — Ve
Once beyond the influence of the star, a ship will cruise indefinately

at the hyperbolic excess velocity in aproximately a straight line.

RELATIVISITIC MOTION

 = 1 / sqrt ( 1— ((v2) / (c2)))
For two inertial (unaccelerated) frames of reference, if frame S' is moving with respect

to frame S with velocity V, in the postive direction along the x—axis during time t, then:

x' =   (x — (V t))

x =   (x' + (V t))

t' =   (t — ((V  x)/(c2)))

t =   (t' + ((V  x')/(c2)))

For a rocket moving with constant acceleration a, due to thrusting in its

proper frame, then the total elapsed proper time t' (as time is measured

on the rocket) over distance S:

t' = (c/a)  cosh—1(1 + (a  S)/(c2))
where  cosh—1(x) = inverse hyperbolic cosine of x

As (aS)/(c2) approaches 1.0, the equation becomes

t' = (c/a)  ln((2  a  S)/(c2))
The vehicle's velocity after accelerating for t' and reaching distance S is:

V = c  sqrt(1 — (1 / (1 + ((a  S) / (c2)))2))

If the rocket accelerates at a up to the midpoint, then deaccelerates at —a to destination:

t'= ((2  c)/a)cosh—1(1 + (a/(2  c2))  S ] 

As (aS)/(c2) approaches 1.0, the equation becomes

t' =((2  c)/a)ln[ (a/(c2))S ]

Velocity at turnover is

Vturnover = c*sqrt[ 1 — ( 1 + (a/(2  c2))  S )^(—2) ]

Erik Max Francis <max@alcyone.com>

V = u ln /sqrt[1 + (u2/c2) ln2 ]
where V is the deltavee, and  is the mass ratio, or the ratio of the

initial to the final mass.

    v = c t/sqrt[c2/a'2 + t2]

    r = c [(c2/a'2 + t2) — c/a']

    t' = (c/a') ln [(1 + a'2 t2/c2)^(1/2) + a' t/c]

    t = c v/a'/sqrt(c2 — v2)
a' = subjective acceleration

v = objective velocity

r = objective displacement

t = objective elapsed time

t' = subjective elapsed time

"objective" = from the rest frame (at rest relative to the departure point)

"subjective" = from the ship frame


Subjective (not objective) acceleration is constant; acceleration is all in one direction only.

Example:
    t = c v/a'/sqrt(c2 - v2)
if v = 0.995 c and a' = 5000 gee 

then t = 8.61e4 sec = 23.9 hours
Now plug t into

    t' = (c/a') ln [(1 + a'2 t2/c2)^(1/2) + a' t/c]

and get 2.04e4 sec = 5.67 hours

Plug t into

    r = c [(c2/a'2 + t2) - c/a']

to get objective displacement of 2.4e13 m (about 160 au)

Bill Woods <wwoods@ix.netcom.com>:
  Assuming a magical stardrive which allows you to accelerate continuously at constant acceleration a, as measured onboard the ship,

a  : ship acceleration

tau: ship time (proper time)

d  : ship distance

T: Earth time

D: Earth distance

A: Earth acceleration

Mo: initial mass

M : mass of ship

theta(tau)
= (a/c)tau        : velocity parameter

beta

= v/c  = tanh(theta)

            

= tanh((a/c)tau)

 
= 1/sqrt[ 1 - beta2 ]

v(tau) 

= c*tanh[(a/c)tau]

D(tau) 
= (c2/a)*( cosh[(a/c)tau] - 1 )

tau(D) 
= (c/a)arccosh[ (a/c2)D + 1 ]

d(tau) 
= D/cosh(theta) = (c2/a)*( 1 - sech[(a/c)tau] ) -> c2/a

                      
d ~ c2/a for tau > 6c/a

T(tau) = (c/a)sinh((a/c)tau)        (a/c)T   =    sinh( (a/c)tau )

tau(T) = (c/a)arcsinh((a/c)T)       (a/c)tau = arcsinh( (a/c)T   )

Alternately, in the frame of a stationary observer,

your acceleration is measured as:

A = a / ^3

A(v) = a*sqrt( 1 - (v/c)2 )^3

D(T) = (c2/a)*( sqrt[1 + ((a/c)T)2] - 1 )

T(D) = (c/a)sqrt[ ( (a/c2)D + 1 )2 - 1 ]

v(T) = a*T / sqrt[ 1 + ((a/c)T)2 ]

     = c / sqrt[ 1 + (c/aT)2 ]

beta(T) = v(T)/c = 1 / sqrt[ 1 + (c/aT)2 ]

tau(T) = (c/a)ln[ (a/c)T + sqrt( 1 + ((a/c)T)2 ) ]

A(T) = a / sqrt( 1 + ((a/c)T)2 )^3

For acceleration at 10 m/s2, the time taken to reach various distances

is:

Earth Dist :   Earth time       speed         ship time   ship distance

__________     __________       _____         _________   _____________

   .06 ly :       0.34 yr      0.34     c      0.34 yr     0.06 ly

  0.25 ly :       0.73 yr      0.61     c      0.67 yr     0.20 ly

  0.50 ly :       1.10 yr      0.755    c      0.94 yr     0.33 ly

    1 ly :        1.70 yr      0.873    c      1.28 yr     0.49 ly

    2 ly :        2.79 yr      0.9467   c      1.71 yr     0.64 ly

    4 ly :        4.86 yr      0.9814   c      2.22 yr     0.77 ly

   10 ly :       10.91 yr      0.99622  c      2.98 yr     0.87 ly

   25 ly :       25.93 yr      0.99932  c      3.80 yr     0.92 ly

   50 ly :       50.94 yr      0.99982  c      4.44 yr     0.93 ly

  100 ly :      100.95 yr      0.999947 c      5.09 yr     0.94 ly

 1000 ly :     1000.95 yr      0.999991 c      7.27 yr     0.95 ly

10000 ly :    10000.98 yr      0.999992 c      9.46 yr     0.95 ly

                                                        d -> 0.9500 ly

For a trip which goes from standing start to standing finish,

calculate the time to cover half the distance,

then double the T and tau variables.

DistAlphaCen    = 4.3 ly = 41 Pm = 41e15 m

    1/2 DAC     = 20.5e15 m

    1/2 tauAC   = 55.7e6 sec

    1/2 TAC     = 93.7e6 sec

TauToAlphCen    = 111e6 sec = 3.5 yr

TimeToAlphaCen  = 187e6 sec = 5.9 yr

For a perfectly efficient photon rocket,

theta = ln(Mo/M) , so        M(tau) = Mo*e^[-(a/c)tau]

or more conveniently,        theta(Tau1/2) = ln(2) = 0.7

so the rocket’s halflife is  Tau1/2 = 0.7c/a

for instance, for a = 1 kgal (= 1000 cm/s2 ~ 1 "gee")

Tau1/2 = 21e6 s ~ 8 months

TauToAlphaCen = 111e6 s = 3.5 years ~ 5.3 Tau1/2

so initially the rocket must be more than 31/32 fuel.

LASER LIGHTSAIL
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 = diffraction limited beam divergence angle

r = separation between laser and sail

ds = sail diameter

d = laser transmitter aperture

 = radiation wavelength

by Rayleigh's Criteria:

sin   = (1.22) / d

from the geometry of the figure:

sin   = ds /(2r)

Therefore:

ds /(2r) = (1.22) / d

The distance at which the beam would just fill the sail is:

r = (dsd) / (2.44)

the energy of a photon is

E = (h)

h = Planck's constant = 6.6260755e—35 J/Hz

 = photon's frequency

 = h / p

 = photon's wavelength

p = photon's momentum

c = ()

c = speed of light in vacuum

therefore:

p = E/c

If a beam of total photon energy Eb is completely absorbed by a sail (inelastic collision),

the momentum lost by the beam and gained by the sail is

pi = Eb /c

if the sail is 100% reflective (elastic collision), the momentum is

pe = (2Eb) /c

The starship's momentum change per unit time is

p'e = Ms  V's

Ms = starship mass

V's = starship acceleration

The starship's acceleration is

V's= (2Eb) /(Msc)

BUSSARD RAMJET
Ms = mass of ramjet starship

Vs = velocity

 = ion density of interstellar medium

A = effective intake area of ramscoop

mi = average mass of scooped-up interstellar ions

 = fraction of reaction mass converted into exhaust kinetic energy by reactor

V's = ship acceleration

M'f = fuel mass collected per second

Ve = exhaust velocity relative to interstellar medium

Ms V's = M'f Ve
Mf = A   mi Vs
Ve =   ( (c2) / Vs)

V's = A   mi  ( (c2) / Ms)

Note that ramjet acceleration is independent of spacecraft velocity!

Example:

A = 3.14e12 m  ( scoop diameter of 2000 km)

Ms = 1e6 kg

 = 1e—3

 = 1e—6/m3
mi = 1.67e—27 kg(protons)
therefore:

V's = 0.5 m/sec2 = 0.05 g (note: this does not compute...)

While the interstellar medium as a whole has an average density of about 0.5 atom per cubic centimeter, the interior of the Local Bubble has

a density of 0.05 - 0.07 atoms/cc.

Ionizing interstellar hydrogen by laser beam
vol = volume traversed by a laser photon

L = beam length

 = wavelenght = 0.0916m = 9.16e—8 m

vol = L 2/ 4

vol =  L  ((2) / 4) or ( L  (2)) / 4

tVol = total volume of entire laser beam

R = beam radius

tVol =  (R2)  L

E = photon energy

h = Planck's constant = 6.6260755e—35 J/Hz

E = h c / 
E = h  (c / ) or (h  c) / 
Ei = laser energy for 100% ionization

Ei = 4hcR2/2
Ei = 4  h  c  ((R2) / (2)) or (4  h  c  (R2)) / (2)

Example: if R = 50,000 km then Ei = 2e12 joules

If laser is turned on for 50 days and the pulse is repeated every 230 days,

the laser power is 5e5 watt. Because light travels 1.3e12 km in 50 days,

the necessary beam dispersion is 3e-8 radian.

Fusion Reactions

proton-proton

    1H + 1H  2H + e+ + 

2 protons yield a deuteron, positron, and neutrino

      e+ + e-  


positron + electron yield a  ray

    1H + 2H  3He + 


proton + deuteron yield a 3He nucleus + 
3He + 3He 4He + 2 1H

2 3He yield an alpha particle and 2 protons

0.007 of initial reactant mass is converted into energy.

Neglecting the energy of the neutrino, 26.20 Mev is released.

Due to low cross-section, the proton-proton reaction is exceedingly difficult

to initiate.

CALCULATING ACCELERATION

Keith Watt <kwatt@ExodusProject.com>

There are essentially three important parameters for any rocket engine: mass of the engine, exhaust velocity or Isp (these are directly related, it's just a matter of preference which you use), and the thrust produced.  The thrust produced will generally depend upon the exhaust velocity and the mass of the propellant.  The acceleration produced depends only upon the thrust of the engine and the mass of the rocket.  

Now, the mass of the rocket changes as fuell is burned, therefore so doe the acceleration - and the rate at which fuel is burned is determined by the Isp.  No rocket has a constant acceleration unless you intentionally reduce the thrust of you burn fuel. 

For the Orion engine, my notes give the following parameters:

Thrust: 263 kN, Ve = 43 km/sec, mass of engine = 200,000 kg

Very Important Point: none of these parameters will let us calculate the acceleration of the rocket!  We also need to know the mass of the

rocket.  

But the mass of the rocket also includes the mass of the fuel

used to power that rocket, so you also need to know how much fuel you have on board.  But how much fuel you have board is determined by how long you want the engine to burn and how much fuel the rocket will burn in that amount time (which is determined by Isp or Ve).  This is what my article and the accompanying Java applet let you calculate, so I won't repeat that here. ( http://www.exodusproject.com )
So, yes, I can get an Orion rocket to have as high an acceleration as I

want (essentially) by just using a tiny rocket.  In reality, my fastest acceleration would be if I launched an engine with no payload and only one bomb - I'd get a high acceleration, but only for a microsecond.  

For the curious, in order to get an acceleration of 1g out of an Orion


engine, I need the rocket (with fuel and engine) to weigh no more than 26,800 kg [F=ma => m=F/a => m=263000 (kg-m/s^2)/9.8 (m/s^2)]. If the engine itself does indeed mass 200,000 kg, there's no way an Orion could make 1g no matter what, assuming these parameters are right.

Suppose the mass estimate I have is way wrong (it's not), and the engine only masses 2,000 kg.  This means we have 24,800 kg to assign to fuel and payload (which includes the structure of the rocket itself!) and we can still have an acceleration of 1g.  Let's say our only payload is a single human pilot and rocket structure and crew support systems mass oh, 4,800 kg to make things simple.  How long can the rocket maintain 1g?

The mass of the propellant burned is given by:

Mp (tons) = 

thrust (kN) * deltat (s)/(Isp (ksec) * 1000 (kg/ton) * 9.81 (m/s^2))


or equivalently,


Mp (tons) = thrust (kN) * deltat (s)/(ve (km/s) * 1000 (kg/ton))


Solving for deltat gives:

deltat (s) = (Mp (tons) * ve (km/s) * 1000 (kg/ton))/thrust (kN)

So for our rocket:

deltat (s) = (20 tons * 43 km/sec * 1000 (kg/ton))/263 (kN) 

= 3270 s 

= 54.5 mins


So you see, if the rocket (and engine) is small enough anything is possible.


BTW, while the very early design stages of Orion called for a ground launch, those were abandoned fairly quickly in favor of orbital assembly.  Also keep in mind that Orion is  a pulsed engine: it coasts I between detonations.  All the formulae in my article assume a constant thrust, which certainly doesn't apply here.  For back-of-the envelope calculations, though, you can think of it as an "average" acceleration and it's pretty good.  There are, however, a -lot- more variables that go into nuclear pulse propulsion than I'm dealing with in the simple analysis here!

So why do people talk about Isp instead of thrust?  Because Isp is your "gas mileage" and it doesn't matter how much thrust your engine produces if it runs out of gas before it can get up to speed!  So, for interplanetary missions, it's far more important to have a high Isp than a high thrust.  This, incidentally, is why we need cheap access to space so that we can build these ships in orbit...

Realistic Engines for Tactical Space Combat Games


< http://www.exodusproject.com >

Everything begins with the rocket equation:

Dv (km/s) = ve (km/s)*Ln[Mship (tons)/(Mship (tons) - Mp (tons))]

where:

Dv = Change in velocityin km/s

ve = Exhaust velocity of rocket in km.s

Mship = Initial mass of rocket in tons

Mp = Mass of propellant burned

Knowing Dv, we can approximate the acceleration produced by:

a (km/s^2) = Dv (km/s)/Dt (s)

where Dt is the time of the burn, in this case, the length of one turn. For reference, the acceleration due to gravity near the surface of the Earth is 1 g = 9.81 m/s^2 = 0.00981 km/s^2.

Knowing the acceleration allows us to find the distance travelled in one turn. This value sets the distance scale for the game (typically 1" on the board will equal this value). In real physics, the relationship is:

s (km) = 1/2 * a (km/s^2) *(Dt (s))^2

Note that here we've assumed a constant acceleration, which is clearly not the case, but the approximate formula for the acceleration used above is the average acceleration, which is (by definition) constant over one turn.

Now, our first departure from real physics: the movement systems of many games assume that the rocket reaches its final velocity instantaneously and then travels at that velocity for the entire turn. This is referred to as an impulse-type game. For these types of games, instead of using the average of the initial and final velocities (the initial velocity is assumed to be zero), we use the final velocity only. The effect of this is that the distance equation becomes:

s (km) = a (km/s^2) * (Dt (s))^2

In other words, we can travel twice as far in one turn if we assume we get all our velocity increase at the beginning off the turn rather than lettin it build up over the course of one turn.

The only remaining question - and it is at the heart of rocket theory – is how much propellant are we burning each turn? The paradox of rocketry is that in order to get the maximum acceration possible from the rocket, we want to burn as much mass as possible and expell it at the highest exhaust velocity possible, yet we also want to conserve fuel! 

The two goals are of course mutually exclusive, so the game becomes to find the best balance between the two. We will not want the highest thrust engines (chemical rockets) because their fuel efficiency is too low to be of use for long-duration spaceflight. We also will not want the most fuel efficient engines (photon, or antimatter rockets) because the do not produce enough thrust to be usable in combat.

In general, one can specify the performance parameters of a rocket by providing the thrust (usually in kN) of the engine and the specific impulse (Isp, usually in ksec). 

The thrust is simply how hard the rocket pushes and is familiar to most space gamers. 

The Isp is, by definition, the impulse (force * time) of the engine produced by 1 kg of fuel. 

With the force (the thrust) measured in kN and the time measured in seconds, the astute reader will note that the units of Isp should be km/s (the same as velocity). In fact this definition gives the exhaust velocity of the rocket in km/s. 

For reasons lost in tradition, however, the Isp is reported in ksec, therefore it has been divided by the acceleration due to gravity (in m/s^2) so as to give the desired units. The actual definition of Isp is therefore:

Isp (ksec) = F (kN) * Dt (s)/(Mp (tons) * 1000 (kg/ton) * 9.81 (m/s^2))

and remember that:

ve (km/s) = Isp (ksec) * 9.81 (m/s^2)

Solving the Isp definition for the mass of propellant burned (Mp) gives:

Mp (tons) = F (kN) * Dt (s)/(Isp (ksec) * 1000 (kg/ton) * 9.81 (m/s^2))

or, equivalently:

Mp (tons) = F (kN) * Dt (s)/(ve (km/s) * 1000 (kg/ton))

We are now in a position to calculate the acceleration produced (and therefore the distance travelled) by any single rocket engine. The is no reason, however, why we can't have more than one engine aboard our ship.

Adding extra engines does not change the exhaust velocity of the rocket, but it does increase the thrust produced - and therefore it increases the amount of propellant burned. If there are N identical engines on board the rocket, the mass of propellant burned is simply:

Mp (tons) = N (drives) * F (kN) * Dt (s)/(ve (km/s) * 1000 (kg/ton))

Now, how many engines can be placed on board a ship? This issue is decided by the design system (if any) in the rules of the game. For most systems, an engine (and its fuel) takes up a certain percentage of the total mass of the ship for each unit of acceleration ("thrust point") it produces. The mass of one engine as specified in the design system is the mass of the engine itself plus the fuel carried onboard. 

The next question is how much fuel is carried on board? We will assume that the ship must carry enough fuel to burn at maximum acceleration for the entire length of the game. How many turns, T, a game will continue will depend upon the game system in question. The total mass of one drive unit is:

Md (tons) = Mengine (tons) + T (turns/game) * Mp (tons/turn)

or

Md (tons) = 

Mengine (tons) + T (turns/game) * F (kN) * Dt (sec/turn)/(ve (km/s) * 1000 (kg/ton))

If the percentage of total ship mass allowed for engines (per thrust point) is P (e.g., 5%), the number of drive units we can have on board is:

N (drives) = P (percentage) / 100 * Mship (tons) / Md

or

N (drives) = 

P (percentage) / 100 * Mship (tons) / (Mengine (tons) + T

(turns/game) * F (kN) * Dt (sec/turn)/(ve (km/s) * 1000 (kg/ton)))

The game system, then, must provide the values of P and T and either Dt (the length of one turn in secs) or s (the distance travelled in one turn in km) must be chosen. In general it is easier to specify the turn length

and calculate the distance scale, but equations will be provided for the reverse. 

Notice our second departure from reality here: we have assumed that engines are infiinitely scalable, that is I can have "1.53 drive units". In actuality, some engines are simply to large to fit on a small spacecraft. If you want to be truly realistic, you should restrict yourself to using integer values of N. This means that under most design systems you will have search for the breakpoints in design which allow you to use integer numbers of drive units and smaller ships may have to use a different drive than larger ships.

Summary

We now have everything we need. The procedure is therefore:

1. From the game system, specify P and T. Note that few game systems have a hard limit on the number of turns in a game, so you must use your own experience to judge how long a typical game will last.

2. Set (arbitrarily) the turn length in seconds.

3. Find the mass in tons, the thrust in kN, and either the Isp in ksec or the exhaust velocity in km/s for your candidate engine.

4. Calculate the number of drive units onboard using:

N (drives) = P (percentage) / 100 * Mship (tons) / (Mengine (tons) + T

(turns/game) * Dt (sec/turn) * F (kN) / (ve (km/s) * 1000 (kg/ton)))

Note that the mass of the ship is going to cancel, so it is really irrelevant unless you wish to install extra fuel tanks (see the fuel consumption rules elsewhere).

5. Calculate the mass of propellant burned in one turn using:

Mp (tons/turn) = N (drives) * F (kN) * Dt (sec/turn) / (ve (km/s) * 1000

(kg/ton))

6. Calculate the acceleration produced using:

a (km/s^2) = ve (km/s) / Dt (sec) *Ln[Mship (tons) / (Mship (tons) - Mp

(tons))]

Record this number, it is the acceleration produced by 1 "thrust point".

Divide by 0.00981 km/s^2 to get the acceleration in g's.

7. Calculate the distance travelled in one turn using:

s (km) = a (km/s^2) * (Dt (s))^2

If your game system allows you to use real physics, halve this number.

That's all there is to it!

An Example: Full Thrust

1. The Full Thrust Fleet Book specifies that each thrust point (therefore all our results will be per thrust point) of the ship requires 5% of the total mass, therefore P=5. Typically, a Full Thrust game will not extend more than 10 turns, therefore T=10.

2. Many people have noted that it is desirable to have the Full Thrust and Dirtside II time scales match. Therefore, assume that one turn is 15 minutes, hence Dt = 900 sec.

3. Let's assume Full Thrust engines are deuterium-tritium fusion engines. The relevant parameters are: Md = 10 tons, ve = 22 km/s, F = 108 kN.

4. The number of drives which can be put in a 1 MASS (100 ton) ship (remember the mass is irrelevant) is:

N (drives) = 5 / 100 * 100 (tons) / (10 (tons) + 10 (turns/game) * 900

(sec/turn) * 108 (kN) / (22 (km/s) * 1000 (kg/ton)))

=> N = 0.09228 drives

Notice that this is (far!) less than one, so technically this engine will not fit on a 100-ton ship.

5. The mass of propellant burned in one turn is:

Mp (tons/turn) = 0.09228 (drives) * 108 (kN) * 900 (sec/turn) / (22 (km/s)

* 1000 (kg/ton))

=> Mp = 0.4077 tons/turn

6. The acceleration produced is:

a (km/s^2) = 22 (km/s) / 900 (sec) *Ln[100 (tons) / (100 (tons) - 0.4077 (tons))]

=> a = 0.0000999 km/s^2 = 0.09987 m/s2 = 0.01 g

This is the acceleration produced by one thrust point.

7. The distance travelled in one turn using one thrust point is:

s (km) = 0.0000999 (km/s^2) * (900 (s))^2

=> s = 80.89 km/MU

Notice that if we had used real physics instead of the modified system used in the game, we'd get half this value.

Table of Realistic Engines

The engines presented here are typical engines which we can either build now or feel we could in the relatively near future. In order to give everyone a common frame of reference, all of the values are taken from Phil Eklund's excellent Rocket Flight game. The few of these engines that I have been able to verify have been dead-on, so I'm willing to except his values for the rest. If anyone has better information, I'd very much like to see it!

Turn Length (sec): 900

Combat Turns in Drive: 10

Ship Mass: 100

Ship Thrust: 1

% engine mass/TP: 5

                                      Engine              Total

 Drive Type   Quantity Ve      Thrust Mass   Burn Rate    Mass    Accel/Thrust km/MU

                       (km/s)  (kN)          (Tons/Turn)          Pt (m/s^2)

                                      (tons)              (tons)

 Liquid

 Chemical     1.50E-03 4.5     1668   2      0.50         5.00    0.0250       20.29

 Solid Core

 Fission      8.32E-02 8.8     49     10     0.42         5.00    0.0408       33.08

 Mass Driver  3.21E-02 30      20     150    0.02         5.00    0.0064       5.19

 Ion Electric 1.25E-02 157     10     400    0.00         5.00    0.0012       1.01

 JxB Electric 4.52E-02 74      5      110    0.00         5.00    0.0023       1.83

 Orion Fission

 Pulse        1.96E-02 43      263    200    0.11         5.00    0.0516       41.79

 Gas Core

 Fission      1.36E-01 30      23     30     0.09         5.00    0.0312       25.26

 MPD          3.25E-03 314     20     1540   0.00         5.00    0.0006       0.53

 Orion Fusion

 Pulse        2.12E-02 73      292    200    0.08         5.00    0.0619       50.13

 D-T Fusion   9.23E-02 22      108    10     0.41         5.00    0.0999       80.89

 H-B Fusion   1.66E-02 980     61     300    0.00         5.00    0.0101       8.22

 He3-D Fusion 4.17E-03 7840    49     1200   0.00         5.00    0.0020       1.65

 Pion

 Annihilation 1.00E-02 7840    49     500    0.00         5.00    0.0049       3.97

 New Drive    4.86E-02 7840    2541   100    0.01         5.00    1.2346       1000.01

EXHAUST VELOCITY

Erik Max Francis <max@alcyone.com>
If the exhaust speed is u, and the mass flow rate (SI kg/s) is kappa, then the power P of a drive system is

    P = (1/2) kappa u^2.

This means that the power per unit mass flow, or massic energy (energy per unit mass), of the drive exhaust is

    Y = P/kappa = (1/2) u^2.

This massic energy can also be thought of as the yield of the fuel

that's being used.  So to determine exhaust speed (u) from fuel yield (Y), you write

    u = (2 Y)^(1/2).

Now you can determine the expected ideal (and these are _really_ ideal; in general the true exhaust speeds will be much less) exhaust speeds from the fuel yields of various methods of generating energy:

        method          yield                   ideal exhaust speed

        chemical        ~1 x 10^7 J/kg          ~4 km/s

        fission         1.1 x 10^14 J/kg        15 000 km/s (0.049 c)

        fusion          6.3 x 10^14 J/kg        36 000 km/s (0.12 c)

        antimatter      9.0 x 10^16 J/kg        300 000 km/s (c)

That's a good place to start.  Basically, if you have a fusion drive that has an exhaust speed of greater than about 0.10 c, you are stretching credibility, for instance.

The nonrelativistic rocket equation is

    v = u ln rho,

where v is deltavee, u is the exhaust speed (as above), and rho is the

"mass ratio," which is the ratio of the initial mass (payload + fuel) to the final mass (just payload).  (This is also equal to the ratio of fuel to payload, plus one.)

The relativistic equation is

    v = u ln rho/[1 + (u^2/c^2) ln^2 rho].

Note ln^2 rho means (ln rho)^2, not ln rho^2.  If you're interested in a

derivation, I can provide it, but it's not terribly interesting.

LOSING SHIP'S ATMOSPHERE THROUGH A HULL BREACH

   v = sqrt( 2  P / rho )

   v = effective speed of the air as it passes through the hole

       (ignoring friction)

   P = difference between inside and outside pressures

   rho = mass density of the air.

Assuming Earth-normal pressure and density inside, and zero pressure

outside, the effective speed works out to a smidgen under 400 m/sec.

   dm/dt = A   sqrt( 2  P  rho )

   dm/dt = the rate (mass per unit time) at which air leaks into vacuum,

   A = Area of the hole it's leaking through

   P = Pressure inside the room far from the hole

   rho = density inside the room far from the hole

GAMMA RAY BURSTERS


The energy released by a gamma ray bursters is about 10^45 J (that's less energy released than in a type II supernova, by the way, albeit most of a supernova's energy is released as neutrinos) and is released over a few seconds.  Since the duration is so short, we can treat it as being instantaneous (you're unlikely to reach safety in two seconds), and so we will deal in energy units rather than power units.


The energy is released almost entirely in gammas (hence the name).  From this we can calculate the distance at which an unprotected human (suppose exposed surface area 1 m2, total mass 70 kg) would reach a lethal dose (LD50 is 4 Sv = 400 rem).


So the question is, at which distance does the dose equivalent reach 4 Sv? The weighting factor for gammas is 1, so 4 Sv corresponds to 4 Gy, which is 4 J/kg of ionizing radiation deposited.  Since our healthy human has a mass of 70 kg, this corresponds to 280 J.  Further, the surface area of 1 m2 leads us to a lethal intensity of 280 J/m2.


So the question becomes:  What distance does our patient have to be from the gamma ray burster to experience a burst intensity of 280 J/m2? Intensity, source energy, and distance are related by

    I = E/(4    (R2)) 

or solving for R, 

    R = sqrt[E/(4    I)]

and solving for R, we get about 5e20 m.  Note, this is about 50 kly.


This doesn't take into account attenuation due to dust, which will of course significantly reduce the flux.  However, the point here is that, we're talking about a _lot_ of radiation.  Enough to sterilize a good portion of a galaxy.

STELLAR POPULATION DENSITY
The solar local density of stars is about 0.13 per pc^3.  For 50 y, the

transmissions have travelled 50 ly, or about 15 pc.  The volume

encompassed in a sphere of that radius is about 15 000 pc^3, and so the

number of stars contained in that sphere should be about 2000.

DESTROYING A PLANET

   The gravitational potential energy of a self-gravitating, uniform sphere is

U = (3/5) G M2 / R

G = 6.67e-11 and for the Earth R = 6.378e+6 and M = 5.98e+24 (all units in MKS), implying a potential energy of 2.258e+32 joules. You need to supply at least this much energy to "reduce the Earth to gravel" and  remove all the pieces to infinity.  This amount of energy is equal to the total conversion to energy of 2.51e+15 kg of matter. That would take at least 1.25e+15 kg of antimatter, assuming total conversion (an assumption not valid for a surface blast; nor would all this energy be "useful" in destroying the Earth (most would be wasted blasting a very small percentage of the mass outward at much more than escape velocity)).

Eric Max Francis: Total energy required to completely gravitational disrupt a uniform, spherical body of mass M and radius R:

E = (9/15) G M2/R

Example: to destroy the Earth


Me = 7E24 kg


Re = 6.75E6 m


G  = 6.67E-11 m^3/kg-s2

E = 2.9E32 Joules

In terms of the Sun's energy output:


Ls = 3.7E26 Watts


2.9E32 / 3.7E26 = 7.8E5 seconds = about a week

Or a five- to ten-mile chunk of antimatter, or a fifty-mile wide fusion bomb.

Note: 9/15 = 3/5 = 0.6

CLOSE APPROACH TO A NEUTRON STAR

Erik Max Francis <max@alcyone.com>

I looked at this a little more and this is the differential equation I came up with:
                              6 G M (h sin phi - x cos phi)

    d2 phi/(dx dt) = -----------------------------------------------

                      v l (x2 + h2)^(1/2) [(x2 + h2)^(1/2) - l]2
x(t) is the position along the "orbit" (idealized as a straight line); x = 0 (at t = 0) corresponds to the point of closest approach.  v is dx/dt (taken as constant).  h is the closest approach to the neutron star; 2 l is the length of the ship.  M is the mass of the neutron star.  phi(t) is the position angle of the ship, such that phi(t = 0) = pi/2.  (dphi/dt)(t = 0) = v/h.

"PRESSOR" DRIVE

Erik Max Francis <max@alcyone.com>

In past conversations, the idea for a "pressor drive" has been brought

up -- a reactionless drive which gets around by "pushing" off of masses.

One can handwave that it accomplishes this by obeying conservation laws;

e.g., the ship experiences a force by "pushing" on, say, a planet, but

the planet experiences an equal and opposite force.

So let's analyze some possible characteristics of the drive, and

backengineer what quantitative characteristics it must have to

accomplish goals.

So we'll start with this:  The drive "presses" on nearby masses when

turned on.  (It can be fine-tuned, so for a given mass at a given

distance, there is a maximum force that the drive can experience, but it

can be "throttled down" so it doesn't _have_ to be at the maximum.)  To

make things interesting, let's say that the drive operates by

"reflecting" something off of the masses in question, so that the force

applied to the ship varies as the inverse fourth power of the distance. 

If it is also directly proportional to the mass, then the equation for

the thrust F achieved from one mass M and a distance r is

    F = k M/r^4, 

where k is the constant of proportionality, with (SI) units of N m^4/kg,

or m^5/s2.

Now let's start with the backengineering.  Let's say we want to use this

drive for interstellar (slower than light) travel.  Let's calculate the

straight-line deltavee achieved by turning one of these drives on in the

vicinity of a mass.

Acceleration a is related to thrust F by 

    a = F/m, 

where m is the mass of the ship.  Substituting our equation above, we

get the equation of motion for the drive:

    a = k (M/m)/r^4.

Since k, M, and m are all constants, we can define another constant K ==

k M/m and simply the equation of motion:

    a = K/r^4.

a = dv/dt.  We're interested in deltavee accumulated by the ship being

accelerated by the drive as it moves through a certain distance, so we

want our integration variables to be v and r, not v, r, and t.  So we

can do some mathematical manipulation:

    a = dv/dt = (dv/dr) (dr/dt) = v dv/dr, 

and now we can write

    v dv = K r^-4 dr.

Integrating v from 0 (at rest) to v (deltavee), and r from r_o (initial

distance) to r (final distance), and we get

    (1/2) v2 = (1/3) K (1/r_o^3 - 1/r^3).

And solving for v, 

    v = [(2/3) K (1/r_o^3 - 1/r^3)]^(1/2).

We can resubstitute K with k M/m, or a more convenient form, k rho,

where rho == M/m, the ratio of the mass of the pressed body to the mass

of the pressing body:

    v = [(2/3) k rho (1/r_o^3 - 1/r^3)]^(1/2).

Now the question is:  What choice of k will make this drive suitable for

interstellar travel?  We can backengineer this problem by selecting for

a situation where the drive will get us to relativistic velocities. 

Let's say that we start from Earth orbit (r_o = 1.5 x 10^11 m),

accelerates out to infinity (r -> oo), and the deltavee is around

lightspeed (v = c)*.  If we choose the mass of the ship such that's

comparable to a large naval vessel (~10^8 kg) and it's pressing against

the Sun (~10^30 kg), then rho ~ 1022.

You can solve for k and find 

    k = v2/[(2/3) rho (1/r_o^3 - 1/r^3)].

and with these parameters, k ~ 1028 N m^4/kg.  So with this parameter,

the drive can be used for interstellar travel (though one couldn't drive

it at full throttle, for the initial acceleration would be ~10 000 gee!).

* This is an effective way to start with the qualitative behaviors

you're interested in, and then refine the quantitative behaviors to get

the specific applications of a device.

** Clearly the ship will not reach c, but we're just using this as a

potential for acceleration, not as an actual speed reached.  Besides,

the computations performed weren't relativistic anyway.
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